【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點D2,依此類推,∠ABD4與∠ACD4的角平分線交于點D5,則∠BD5C的度數(shù)是_____.
【答案】25°
【解析】
根據(jù)題意可得∠ABC+∠ACB=160°,BD1,CD1,CD2,BD2…BDn,CDn是角平分線,可得∠ABDn+∠ACDn=160×()n,可求∠BCDn+∠CBDn的值,再根據(jù)三角形內(nèi)角和定理可求結(jié)果.
∵∠A=20°,∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=160°,
∵BD1平分∠ABC,CD1平分∠ACB,
∴∠ABD1=ABC,∠ACD1=∠ACD,
∵BD2平分∠ABD1,CD2平分∠ACD1
∴∠ABD2=∠ABD1=∠ABC,∠ACD2=∠ACD1=∠ACB,
同理可得∠ABD5=∠ABC,∠ACD5=∠ACB,
∴∠ABD5+∠ACD5=160×=5°,
∴∠BCD5+∠CBD5=155°,
∴∠BD5C=180﹣∠BCD5﹣∠CBD5=25°
故答案為25°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點F , 點E為垂足,連接DF , 求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】揚州市教育行政部門為了了解八年級學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機調(diào)查了部分學(xué)生,并將他們一學(xué)期參加綜合實踐活動的天數(shù)進行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:
(1)參加調(diào)查的八年級學(xué)生總?cè)藬?shù)為_______人;
(2)根據(jù)圖中信息,補全條形統(tǒng)計圖;扇形統(tǒng)計圖中“活動時間為4天”的扇形所對應(yīng)的圓心角的度數(shù)為_______;
(3)如果全市共有八年級學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;④兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形DEFG都是正方形,設(shè)AB=a,DE=b(a>b).
(1)寫出AG的長度(用含字母a,b的代數(shù)式表示);
(2)觀察圖形,當用不同的方法表示圖形中陰影部分的面積時,你能獲得一個因式分解公式,請將這個公式寫出來;
(3)如果正方形ABCD的邊長比正方形DEFG的邊長多16cm,它們的面積相差960cm2,試利用(2)中的公式,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖1中,A1,B1,C1分別是△ABC的邊BC,CA,AB的中點,在圖2中,A2,B2,C2分別是△A1B1C1的邊B1C1,C1A1,A1B1的中點,…,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有___個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD被直線AE所截,直線AM,EN被MN所截.請你從以下三個條件:①AB∥CD;②AM∥EN;③∠BAM=∠CEN中選出兩個作為已知條件,另一個作為結(jié)論,得出一個正確的命題.
(1)請按照:“∵ , ;∴ ”的形式,寫出所有正確的命題;
(2)在(1)所寫的命題中選擇一個加以證明,寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖4所示,△ABE和△ADC是△ABC分別沿著AB,AC邊翻折180°形成的,
若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)是 ( )
A. 80° B. 100° C. 60° D. 45°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com