【題目】如圖,在中,,,分別為邊、上一點(diǎn),將沿著直線翻折,點(diǎn)落在點(diǎn)處,若,是等邊三角形,那么____.

【答案】4

【解析】

由題意可得∠CAD=30°,∠AEF=60°,根據(jù)勾股定理可求CD=,由AC//DF,∠AEF=EFD=60°,且DE=DF,可得∠DEF=DFE=60°,可得∠DEC=60°, 根據(jù)勾股定理可求EC的長(zhǎng),即可求AE的長(zhǎng),見(jiàn)詳解.

如圖:

∵折疊
∴∠EAD=FAD,DE=DF
∴∠DFE=DEF
∵△AEF是等邊三角形
∴∠EAF=AEF=60°
∴∠EAD=FAD=30°
RtACD中,AC=6,∠CAD=30°,
CD=

FDBC,ACBC
AC//DF
∴∠AEF=EFD=60°
∴∠FED=60°
∵∠AEF+DEC+DEF=180°

∴∠DEC=60°
∵在RtDEC中,∠DEC=60°CD=

EC=2
AE=ACEC
AE=62=4
故答案為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為數(shù)軸上的兩個(gè)點(diǎn),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為.

1)現(xiàn)有一只電子螞蟻從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)處相遇,求點(diǎn)表示的數(shù);

2)若電子螞蟻從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí)另一電子螞蟻恰好從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)處相遇,求點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,矩形OABC的邊OAOC分別在x軸的正半軸、y軸的正半軸上,且OA、OC)的長(zhǎng)是方程的兩個(gè)根.

1)如圖,求點(diǎn)A的坐標(biāo);

2)如圖,將矩形OABC沿某條直線折疊,使點(diǎn)A與點(diǎn)C重合,折痕交CB于點(diǎn)D,交OA于點(diǎn)E.求直線DE的解析式;

3)在(2)的條件下,點(diǎn)P在直線DE上,在直線AC上是否存在點(diǎn)Q,使以點(diǎn)A、BP、Q為頂點(diǎn)的四邊形是平行四邊形.若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)化簡(jiǎn)求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長(zhǎng)15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍

(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?

(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)5.2萬(wàn)元,甲工程隊(duì)至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

(1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱(chēng)的A1B1C1;

(2)將A1B1C1向右平移3個(gè)單位,作出平移后的A2B2C2;

(3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并求最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面內(nèi),兩條直線L1,L2相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,p,q分別是點(diǎn)M到直線L1,L2的距離,則稱(chēng)(p,q)為點(diǎn)M距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)(2,1)的點(diǎn)共有_____個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線a,b被直線l所截,則圖中對(duì)頂角有______對(duì),分別是_____________;鄰補(bǔ)角有______對(duì),分別是____________;同位角有________對(duì),分別是____________;內(nèi)錯(cuò)角有________對(duì),分別是____________;同旁?xún)?nèi)角有______對(duì),分別是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)AB,C,D的坐標(biāo)分別是(17),(1,1),(4,1),(6,1),以CD,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )

A. 6,0B. 6,3C. 6,5D. 4,2

查看答案和解析>>

同步練習(xí)冊(cè)答案