【題目】在平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下的定義:若在圖形M存在一點(diǎn)Q,使得P、Q兩點(diǎn)間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為2時(shí),
①在點(diǎn) 中,⊙O的關(guān)聯(lián)點(diǎn)是_______________.
②點(diǎn)P在直線y=-x上,若P為⊙O 的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)⊙C 的圓心在x軸上,半徑為2,直線y=-x+1與x軸、y軸交于點(diǎn)A、B.若線段AB上的所有點(diǎn)都是⊙C的關(guān)聯(lián)點(diǎn),直接寫出圓心C的橫坐標(biāo)的取值范圍.
【答案】(1)①P2、P3,②-≤x≤-或 ≤x≤;(2)-2≤x≤1或2≤x≤2 .
【解析】
試題(1)①由題意得,P只需在以O(shè)為圓心,半徑為1和3兩圓之間即可,由 的值可知為⊙O的關(guān)聯(lián)點(diǎn);②滿足條件的P只需在以O為圓心,半徑為1和3兩圓之間即可,所以P橫坐標(biāo)范圍是- ≤x≤- 或 ≤x≤;
(2).分四種情況討論即可,當(dāng)圓過點(diǎn)A, CA=3時(shí);當(dāng)圓與小圓相切時(shí);當(dāng)圓過點(diǎn) A,AC=1時(shí);當(dāng)圓過點(diǎn) B 時(shí),即可得出.
試題解析:
(1),
點(diǎn) 與⊙的最小距離為 ,點(diǎn) 與⊙的最小距離為1,點(diǎn)與⊙的最小距離為,
∴⊙的關(guān)聯(lián)點(diǎn)為和.
②根據(jù)定義分析,可得當(dāng)直線y=-x上的點(diǎn)P到原點(diǎn)的距離在1到3之間時(shí)符合題意;
∴ 設(shè)點(diǎn)P的坐標(biāo)為P (x ,-x) ,
當(dāng)OP=1時(shí),由距離公式可得,OP= ,解得 ,當(dāng)OP=3時(shí),由距離公式可得,OP= ,,解得,
∴ 點(diǎn)的橫坐標(biāo)的取值范圍為- ≤x≤- 或 ≤x≤
(2)∵y=-x+1與軸、軸的交點(diǎn)分別為A、B兩點(diǎn),∴ 令y=0得,-x+1=0,解得x=1,
令得x=0得,y=0,
∴A(1,0) ,B (0,1) ,
分析得:
如圖1,當(dāng)圓過點(diǎn)A時(shí),此時(shí)CA=3,
∴ 點(diǎn)C坐標(biāo)為,C ( -2,0)
如圖2,當(dāng)圓與小圓相切時(shí),切點(diǎn)為D,
∴CD=1 ,
又∵直線AB所在的函數(shù)解析式為y=-x+1,
∴ 直線AB與x軸形成的夾角是45°,
∴ RT△ACD中,CA= ,
∴ C點(diǎn)坐標(biāo)為 (1-,0)
∴ C點(diǎn)的橫坐標(biāo)的取值范圍為;-2≤ ≤1-,
如圖3,當(dāng)圓過點(diǎn)A時(shí),AC=1,
C點(diǎn)坐標(biāo)為(2,0)
如圖4,
當(dāng)圓過點(diǎn) B 時(shí),連接 BC ,此時(shí) BC =3,
在 Rt△OCB中,由勾股定理得OC= , C點(diǎn)坐標(biāo)為 (2,0).
∴ C點(diǎn)的橫坐標(biāo)的取值范圍為2≤ ≤2 ;
∴綜上所述點(diǎn)C的橫坐標(biāo)的取值范圍為- ≤≤- 或 ≤≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是 .(寫出所有正確結(jié)論的序號(hào))
①b>0
②a﹣b+c<0
③陰影部分的面積為4
④若c=﹣1,則b2=4a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx經(jīng)過原點(diǎn)O和點(diǎn)A(12,0),在B在拋物線上,已知OB⊥BA,且∠A=30°.
(1)求此拋物線的解析式.
(2)如圖2,點(diǎn)P為OB延長線上一點(diǎn),若連接AP交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t,點(diǎn)M的橫坐標(biāo)為m,試用含有t的代數(shù)式表示m,不要求寫取值范圍.
(3)在(2)的條件下,過點(diǎn)O作OW⊥AP于W,并交線段AB于點(diǎn)G,過點(diǎn)W的直線交OP延長線于點(diǎn)N,交x軸于點(diǎn)K,若∠WKA=2∠OAP,且NK=11,求點(diǎn)M的橫坐標(biāo)及WG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是甲、乙兩名射擊運(yùn)動(dòng)員的10次射擊測試成績的折線統(tǒng)計(jì)圖.
(1)根據(jù)折線圖把下列表格補(bǔ)充完整;
運(yùn)動(dòng)員 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 8.5 | 9 | |
乙 | 8.5 |
(2)根據(jù)上述圖表運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)對(duì)甲、乙兩名運(yùn)動(dòng)員的射擊水平進(jìn)行評(píng)價(jià)并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲車從地出發(fā)勻速駛向地,到達(dá)地后,立即按原路原速返回地;乙車從地出發(fā)沿相同路線勻速駛向地,出發(fā)小時(shí)后,乙車因故障在途中停車小時(shí),然后繼續(xù)按原速駛向地,乙車在行駛過程中的速度是千米/時(shí),甲車比乙車早小時(shí)到達(dá)地,兩車距各自出發(fā)地的路程千米與甲車行駛時(shí)間小時(shí)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象信息解答下列問題:
(1)寫出甲車行駛的速度,并直接寫出圖中括號(hào)內(nèi)正確的數(shù)__ __
(2)求甲車從地返回地的過程中,與的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍).
(3)直接寫出甲車出發(fā)多少小時(shí),兩車恰好相距千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=6,C為圓周上的一點(diǎn),BC=3.過C點(diǎn)作⊙O的切線GE,作AD⊥GE于點(diǎn)D,交⊙O于點(diǎn)F.
(1)求證:∠ACG=∠B.
(2)計(jì)算線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴(kuò)大銷售,增加贏利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場平均每天可多售出2件.求:
(1)若商場平均每天要贏利1200元,每件襯衫應(yīng)降價(jià)多少元?
(2)每件襯衫降價(jià)多少元時(shí),商場平均每天贏利最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com