【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE,PF分別交AB,AC于點E,F,現(xiàn)給出以下四個結(jié)論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四邊形AEPF=S△ABC;(4)當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時始終有EF=AP.(點E不與A、B重合),上述結(jié)論中是正確的結(jié)論的概率是( 。
A.1個B.3個C.D.
【答案】D
【解析】
根據(jù)題意,容易證明△AEP≌△CFP,然后能推理得到選項A,B,C都是正確的,當EF=AP始終相等時,可推出,由AP的長為定值,而PF的長為變化值可知選項D不正確.從而求出正確的結(jié)論的概率.
解:∵AB=AC,∠BAC=90°,點P是BC的中點,
∴,.
(1)在△AEP與△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,
∴△AEP≌△CFP
∴AE=CF.(1)正確;
(2)由(1)知,△AEP≌△CFP,
∴PE=PF,
又∵∠EPF=90°,
∴△EPF是等腰直角三角形.(2)正確;
(3)∵△AEP≌△CFP,同理可證△APF≌△BPE.
∴.(3)正確;
(4)當EF=AP始終相等時,由勾股定理可得:
則有:,
∵AP的長為定值,而PF的長為變化值,
∴與不可能始終相等,
即EF與AP不可能始終相等,(4)錯誤,
綜上所述,正確的個數(shù)有3個,
故正確的結(jié)論的概率是.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )
A. Rt△ACD和Rt△BCE全等 B. OA=OB
C. E是AC的中點 D. AE=BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.
(1)判斷DH與⊙O的位置關(guān)系,并說明理由;
(2)求證:H為CE的中點;
(3)若BC=10,cosC=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象過點,,若點,,也在二次函數(shù)的圖象上,則下列結(jié)論正確的是( )
A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店銷售一種品牌的羽絨服,平均每天可以銷售件,每件盈利元,為了擴大銷售,減少庫存,商店決定降價銷售,經(jīng)調(diào)查,每件羽絨服每降價元時,平均每天就多賣出件,但是綜合多方因素,降價后,每件盈利不能低于原來每件利潤的一半.
若商場要求該羽絨服每天盈利元,每件羽絨服應(yīng)降價多少元?
試說明每件羽絨服降價多少元時,盈利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由正比例函數(shù)沿軸的正方向平移4個單位而成的一次函數(shù)
的圖像與反比例函數(shù)()在第一象限的圖像交于A(1,n)和B兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)
如圖,點E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com