【題目】小明同學(xué)在綜合實踐活動中對本地的一座古塔進(jìn)行了測量.如圖,他在山坡坡腳P處測得古塔頂端M的仰角為,沿山坡向上走25m到達(dá)D處,測得古塔頂端M的仰角為.已知山坡坡度,即,請你幫助小明計算古塔的高度ME.(結(jié)果精確到0.1m,參考數(shù)據(jù):)
【答案】古塔的高度ME約為39.8m.
【解析】
作交EP的延長線于點C,作于點F,作于點H,先在Rt△DCP中利用已知條件利用勾股定理求出DC和PC的長,從而可得DH和EF的長,設(shè),分別在Rt△MPE和Rt△MFD中根據(jù)60°和30°的三角函數(shù)用y的代數(shù)式表示出PE和DF,再根據(jù)PE、DF和DH的關(guān)系列出方程,解方程后即可求出結(jié)果.
解:作交EP的延長線于點C,作于點F,作于點H,則,,,
設(shè),∵,∴,
由勾股定理得,,即,解得,,
則,,
∴,,
設(shè),則,
在中,,則,
在中,,則,
∵,
∴,解得,,
∴.
答:古塔的高度ME約為39.8m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片的邊長為,翻折,使兩個直角頂點重合于對角線上一點分別是折痕,設(shè),給出下列判斷:
①當(dāng)時,點是正方形的中心;
②當(dāng)時,;
③當(dāng)時,六邊形面積的最大值是
④當(dāng)時,六邊形周長的值不變.
其中錯誤的是( )
A.②③B.③④C.①④D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個智力挑戰(zhàn)賽需要全部答對兩道單項選擇題,才能順利通過第一關(guān).第一道題有個選項,第二道題有個選項,這兩道題小新都不會,不過小新還有一個“求助卡”沒有用,使用“求助卡”可以讓主持人去掉其中一題的一個錯誤選項.
(1)如果小新在第--題使用“求助卡”,請用樹狀圖或者列表來分析小新順利通過第一關(guān)的概率;
(2)從概率的角度分析,你建議小新在第幾題使用“求助卡”.為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結(jié)BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標(biāo);
(3)如圖2,當(dāng)點P在位于直線BC上方的拋物線上運動時,連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)的頂點為A(s,t)(其中s≠0).
(1)若拋物線經(jīng)過(2,7)和(-3,37)兩點,且s=1.
①求拋物線的解析式;
②若n>1,設(shè)點M(n,y1),N(n+1,y2)在拋物線上,比較y1,y2的大小關(guān)系,并說明理由;
(2)若a=2,c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點P和點Q,點P的橫坐標(biāo)為h,點Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;
(3)若點A在拋物線y=上,且2≤s<3時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A1,A2,A3…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點A1(1,1),那么點A2019的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)、兩種商品,購買1個商品比購買1個商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.
(1)求購買一個商品和一個商品各需要多少元;
(2)商店準(zhǔn)備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,點E為AC延長線上一點,且DE是⊙O的切線.
(1)求證:∠CDE= ∠BAC;
(2)若AB=3BD,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(0,6),C為OB的中點,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△A'BC.若反比例函數(shù)y=的圖象恰好經(jīng)過A'B的中點D,則k的值是( )
A.19B.16.5C.14D.11.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com