【題目】某學校開運動會,要買一批筆記本和圓珠筆作為獎品,筆記本要買50本,圓珠筆要買若干支.張老師去了兩家文具店,筆記本和圓珠筆的零售價分別為3元和2元,但甲文具店的營業(yè)員說:“如果筆記本按零售價,那么圓珠筆可按零售價的8折優(yōu)惠.”乙文具店的營業(yè)員說:“筆記本和圓珠筆可按9折優(yōu)惠.”
(1)若要購買的圓珠筆為支,用含的式子表示甲、乙兩個店的收費;
(2)若學校要買100支圓珠筆作為獎品,你認為張老師去哪家文具店較合算?可節(jié)省多少錢?
(3)若買圓珠筆支時,選擇甲文具店較合算,求此時可節(jié)省多少錢?
【答案】(1)1.6x+150,1.8x+135;(2)甲,5元;(3)(0.2y-15)元
【解析】
(1)根據題意可以分別列出甲、乙兩文具店的收費;
(2)將x=80代入(1)中甲乙收費的式子中,然后進行比較即可解答本題;
(3)用乙的收費減去甲的收費即可得到在甲文具店可以省多少錢.
解:(1)由題意可得,
甲文具店的收費為:50×3+2x×0.8=1.6x+150,
乙文具店的收費為:(50×3+2x)×0.9=1.8x+135,
即甲文具店的收費為1.6x+150,乙文具店的收費為1.8x+135;
(2)當x=100時,甲文具店收費為:1.6×100+150=310(元),乙文具店收費為:1.8×100+135=315(元),
∵315>310,315-310=5,
∴學校要買100支圓珠筆作為獎品,我認為張老師應取甲文具店較合算,可節(jié)省5元;
(3)(1.8y+135)-(1.6y+150)
=1.8y+135-1.6y-150
=0.2y-15,
即要買圓珠筆y支時,選擇甲文具店較合算,此時節(jié)。0.2y-15)元.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD,CEFG按如圖放置,點B,C,E在同一條直線上,點P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點M,有下列結論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+與x軸相交于點B,與y軸相交于點A.
(1)求∠ABO的度數(shù);
(2)過點A的直線l交x軸的正半軸于點C,且AB=AC,求直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加某體育項目訓練,為了便于研究,把最后5次的訓練成績分別用實線和虛線連接起來,如圖,下面的結論錯誤的是( )
A. 乙的第2次成績與第5次成績相同
B. 第3次測試,甲的成績與乙的成績相同
C. 第4次測試,甲的成績比乙的成績多2分
D. 在5次測試中,甲的成績都比乙的成績高
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,cm, cm,在中,,cm,cm.EF在BC上,保持不動,并將以1cm/s的速度向點C運動,移動開始前點F與點B重合,當點E與點C重合時,停止移動.邊DE與AB相交于點G,連接FG,設移動時間為t(s).
(1)從移動開始到停止,所用時間為________s;
(2)當DE平分AB時,求t的值;
(3)當為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進行如下操作:①把△ABF翻折,點B落在CD邊上的點E處,折痕AF交BC邊于點F;②把△ADH翻折,點D落在AE邊長的點G處,折痕AH交CD邊于點H.若AD=6,AB=10,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為創(chuàng)建“國家園林城市”,某校舉行了以“愛我黃石”為主題的圖片制作比賽,評委會對200名同學的參賽作品打分發(fā)現(xiàn),參賽者的成績x均滿足50≤x<100,并制作了頻數(shù)分布直方圖,如圖.
根據以上信息,解答下列問題:
(1)請補全頻數(shù)分布直方圖;
(2)若依據成績,采取分層抽樣的方法,從參賽同學中抽40人參加圖片制作比賽總結大會,則從成績80≤x<90的選手中應抽多少人?
(3)比賽共設一、二、三等獎,若只有25%的參賽同學能拿到一等獎,則一等獎的分數(shù)線是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角板的直角頂點放在點O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則∠MOC= ;
(2)如圖②,將三角板MON繞點O逆時針旋轉一定角度,此時OC是∠MOB的角平分線,求旋轉角∠BON和∠CON的度數(shù);
(3)將三角板MON繞點O逆時針旋轉至圖③時,∠NOC=∠AOM,求∠NOB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com