【題目】(1)問(wèn)題背景:
如圖1,在正方形ABCD中,點(diǎn)M,N分別在邊BC,CD上,連接MN,且∠MAN=45°,將△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABG,可證△AMG≌△AMN,易得線(xiàn)段MN、BM、DN之間的數(shù)量關(guān)系為: (直接填寫(xiě));
(2)實(shí)踐應(yīng)用:
在平面直角坐標(biāo)系中,邊長(zhǎng)為5的正方形OABC的兩頂點(diǎn)分別在y軸、x軸的正半軸上,O在原點(diǎn).現(xiàn)將正方形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為θ,當(dāng)點(diǎn)A第一次落在直線(xiàn)y=x上時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,AB邊交直線(xiàn)y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N.如圖2,設(shè)△MBN的周長(zhǎng)為P,在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值是否有變化?請(qǐng)證明你的結(jié)論;
(3)拓展研究:
如圖3,將正方形改為長(zhǎng)與寬不相等的矩形,且∠MAN=∠CMN=45°,請(qǐng)你直接寫(xiě)出線(xiàn)段MN、BM、DN之間的數(shù)量關(guān)系.
【答案】(1)MN=BM+DN;(2)在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值不變;(3)MN2=2BM2+2DN2 ,理由見(jiàn)解析.
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得出DN=BG,由全等的性質(zhì)可得出MG=MN,結(jié)合MG=BM+BG即可得出MN=BM+DN;
(2)將△AOM繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△COE,易證△MON≌△EON(SAS),利用全等三角形的性質(zhì)可得出MN=EN=CN+AM,再利用三角形的周長(zhǎng)公式結(jié)合正方形的邊長(zhǎng),即可求出S的值;
(3)將△ABM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△AB′M′,則△AMN≌△AM′N,利用全等三角形的性質(zhì)可得出M′N=MN,由∠C=90°,∠CMN=45°可得出CM=CN,設(shè)BM=a,DN=b,CM=c,則AD=a+c,CD=b+c,進(jìn)而可得出M′F=a﹣b,NF=b+a,在Rt△M′FN中,利用勾股定理可求出M′N2=2a2+2b2,進(jìn)而可得出MN2=2BM2+2DN2.
解:(1)由旋轉(zhuǎn),可知:DN=BG.
∵△AMG≌△AMN,
∴MG=MN.
∵MG=BM+BG=BM+DN,
∴MN=BM+DN.
故答案為:MN=BM+DN.
(2)在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值不變.
證明:在圖2中,將△AOM繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△COE.
由旋轉(zhuǎn),可知:OM=OE,AM=CE,∠AOM=∠COE,∠MOE=90°.
∵直線(xiàn)OM的解析式為y=x,
∴∠MON=45°.
∵∠MOE=90°,
∴∠EON=45°.
在△MON和△EON中,
,
∴△MON≌△EON(SAS),
∴MN=EN=CN+AM.
∴S=BM+BN+MN=BM+AM+BN+CN=2AB=10,
∴在旋轉(zhuǎn)正方形OABC的過(guò)程中,P值不變.
(3)MN2=2BM2+2DN2.理由如下:
在圖3中,將△ABM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△AB′M′.
由(2)可知△AMN≌△AM′N,
∴M′N=MN.
∵∠C=90°,∠CMN=45°,
∴CM=CN.
設(shè)BM=a,DN=b,CM=c,則AD=a+c,CD=b+c,
∴M′F=AD﹣AB′=AD﹣AB=a+c﹣(b+c)=a﹣b,
NF=DN+DF=DN+B′M′=DN+BM=b+a.
在Rt△M′FN中,M′N2=M′F2+NF2=(a﹣b)2+(a+b)2=2a2+2b2,
∴MN2=2BM2+2DN2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天水市某中學(xué)為了解學(xué)校藝術(shù)社團(tuán)活動(dòng)的開(kāi)展情況,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生,在“舞蹈、樂(lè)器、聲樂(lè)、戲曲、其它活動(dòng)”項(xiàng)目中,圍繞你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))進(jìn)行了問(wèn)卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)在這次調(diào)查中,一共抽查了 名學(xué)生.
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中喜歡“樂(lè)器”部分扇形的圓心角為 度.
(4)請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該校1200名學(xué)生中喜歡“舞蹈”項(xiàng)目的共多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)相似多邊形的定義,我們把四個(gè)角分別相等,四條邊成比例的兩個(gè)凸四邊形叫做相似四邊形.相似四邊形對(duì)應(yīng)邊的比叫做相似比.
(1)某同學(xué)在探究相似四邊形的判定時(shí),得到如下三個(gè)命題,請(qǐng)判斷它們是否正確(直接在橫線(xiàn)上填寫(xiě)“真”或“假”).
①條邊成比例的兩個(gè)凸四邊形相似;( 命題)
②三個(gè)角分別相等的兩個(gè)凸四邊形相似;( 命題)
③兩個(gè)大小不同的正方形相似.( 命題)
(2)如圖1,在四邊形ABCD和四邊形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,,求證:四邊形ABCD與四邊形A1B1C1D1相似.
(3)如圖2,四邊形ABCD中,AB∥CD,AC與BD相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥AB分別交AD,BC于點(diǎn)E,F.記四邊形ABFE的面積為S1,四邊形EFDE的面積為S2,若四邊形ABFE與四邊形EFCD相似,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),自變量x取a時(shí),函數(shù)值y也等于a,我們稱(chēng)a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)y=x2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=3,點(diǎn)M、N分別在線(xiàn)段AC、AB上,將△ANM沿直線(xiàn)M折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線(xiàn)段BC上,當(dāng)△DCM為直角三角形時(shí),折痕MN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明為了了解本校學(xué)生的假期活動(dòng)方式,隨機(jī)對(duì)本校的部分學(xué)生進(jìn)行了調(diào)查.收集整理數(shù)據(jù)后,小明將假期活動(dòng)方式分為五類(lèi):A.讀書(shū)看報(bào);B.健身活動(dòng);C.做家務(wù);D.外出游玩;E.其他方式,并繪制了不完整的統(tǒng)計(jì)圖如圖.統(tǒng)計(jì)后發(fā)現(xiàn)“做家務(wù)”的學(xué)生人數(shù)占調(diào)查總?cè)藬?shù)的.
請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
(1)本次調(diào)查的總?cè)藬?shù)是 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)調(diào)查結(jié)果,估計(jì)本校名學(xué)生中“假期活動(dòng)方式”是“讀書(shū)看報(bào)”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為
(1)求該二次函數(shù)的解析式;
(2)在x軸上方作x軸的平行線(xiàn),交二次函數(shù)圖象于A、B兩點(diǎn),過(guò)A、B兩點(diǎn)分別作x軸的垂線(xiàn),垂足分別為點(diǎn)D、點(diǎn)C.當(dāng)矩形ABCD為正方形時(shí),求m的值;
(3)在(2)的條件下,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿射線(xiàn)AB以每秒1個(gè)單位長(zhǎng)度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q以相同的速度從點(diǎn)A出發(fā)沿線(xiàn)段AD勻速運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)立即原速返回,當(dāng)動(dòng)點(diǎn)Q返回到點(diǎn)A時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒().過(guò)點(diǎn)P向x軸作垂線(xiàn),交拋物線(xiàn)于點(diǎn)E,交直線(xiàn)AC于點(diǎn)F,問(wèn):以A、E、F、Q四點(diǎn)為頂點(diǎn)構(gòu)成的四邊形能否是平行四邊形.若能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P是⊙O上一點(diǎn),連接OP,點(diǎn)A關(guān)于OP的對(duì)稱(chēng)點(diǎn)C恰好落在⊙O上.
(1)求證:OP∥BC;
(2)過(guò)點(diǎn)C作⊙O的切線(xiàn)CD,交AP的延長(zhǎng)線(xiàn)于點(diǎn)D.如果∠D=90°,DP=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中, 的度數(shù)為120°,點(diǎn)P為弦AB上的一點(diǎn),連結(jié)OP并延長(zhǎng)交⊙O于點(diǎn)C,連結(jié)OB,AC.
(1)若P為AB中點(diǎn),且PC=1,求圓的半徑.
(2)若BP:BA=1:3,請(qǐng)求出tan∠OPA.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com