當(dāng)x取哪些整數(shù)值時,不等式5x-9<3x-3和1-2x≤x-1都成立.
考點:一元一次不等式組的整數(shù)解
專題:
分析:先求出兩不等式的解集,找出組成的不等式組的解集,求出整數(shù)解即可.
解答:解:∵解不等式5x-9<3x-3得:x<3,
解不等式1-2x≤x-1得:x≥
2
3
,
∴由兩不等式組成的不等式組的解集是
2
3
≤x<3,
∴整數(shù)x為1,2,
即當(dāng)x取整數(shù)1和2時,不等式5x-9<3x-3和1-2x≤x-1都成立.
點評:本題考查了解一元一次不等式,解一元一次不等式組,不等式組的整數(shù)解的應(yīng)用,解此題的關(guān)鍵是求出兩不等式組成的不等式組的解集,題目比較好,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某市區(qū)一周的一氧化碳污染指數(shù)的數(shù)據(jù)為14,36,39,23,14,32,24,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)依次為(  )
A、14,24,26
B、39,26,24
C、14,24,24
D、39,24,36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(x2+px-
1
3
)(x2-3x+q)的積中不含x項與x3項,
(1)求p、q的值;
(2)求代數(shù)式(-2p2q)2+(3pq)-1+p2012q2014的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知D為△ABC邊BC延長線上一點,DF⊥AB于F交AC于E,∠A=30°,∠D=55°,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在一個正方形網(wǎng)格中有一個△ABC(定點都在格點上).
①在網(wǎng)格中畫出△ABC向右平移5個單位,再向下平移3各單位得到的△A1B1C1
②連接AA1、BB1,求正方形AA1B1B的面積.
③估計正方形AA1B1B的邊長在哪兩個整數(shù)之間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-
3
8
x2-
3
4
x+3與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求點A、B的坐標(biāo);
(2)設(shè)D為y軸上的一點,當(dāng)△ACD的面積等于△ACB的面積時,求D點的坐標(biāo);
(3)已知:直線y=-
k
4
x+k(k>0)交x軸于點E,M為直線上的動點,當(dāng)以A、B、M為頂點所作的直角三角形有且只有四個時,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+x(a≠0)與x軸交于點A(1,0)和B(x1,0),拋物線的頂點為P.
(Ⅰ)若點P(-1,-3),求拋物線的解析式;
(Ⅱ)設(shè)點P(-1,k),k>0,點Q是y軸上的一個動點,當(dāng)QB+QP的最小值等于5時,求拋物線的解析式和Q點的坐標(biāo);
(Ⅲ)若拋物線經(jīng)過點M(m,-a),a>0,求x1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計算:(2-
3
2013(2+
3
2014-2|-
3
2
|-(-
2
0-
8
÷
24
-
27

(2)已知關(guān)于x的不等式組
x-3(x-2)>4
a+2x
3
≤x-1
共有5個整數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的弦,OB=4,∠OBC=30°,C是弦AB上任意一點(不與點A、B重合),連接CO并延長CO交⊙O于點D,連接AD、BD.
(1)求弦AB的長;
(2)當(dāng)∠ADC=15°時,求弦BD的長.

查看答案和解析>>

同步練習(xí)冊答案