如圖,在一個(gè)正方形網(wǎng)格中有一個(gè)△ABC(定點(diǎn)都在格點(diǎn)上).
①在網(wǎng)格中畫出△ABC向右平移5個(gè)單位,再向下平移3各單位得到的△A1B1C1
②連接AA1、BB1,求正方形AA1B1B的面積.
③估計(jì)正方形AA1B1B的邊長在哪兩個(gè)整數(shù)之間?
考點(diǎn):作圖-平移變換,勾股定理
專題:
分析:①根據(jù)圖形平移的性質(zhì)畫出△A1B1C1即可;
②連接AA1、BB1,根據(jù)勾股定理求出AB的長,由正方形的面積公式即可得出結(jié)論;
③估算出AB的長即可.
解答:解:①如圖所示:

②∵由勾股定理可知,AB=
32+52
=
34

∴S正方形AA1B1B=(
34
2=34;

③由②知AB=
34

∵25<34<36,
∴5<
34
<6,即5<AB<6.
點(diǎn)評(píng):本題考查的是作圖-平移變換,熟知圖形平移的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,小麗從O點(diǎn)出發(fā),先向西走20米,再向北走30米到達(dá)點(diǎn)M,如果點(diǎn)M的位置用(-20,30)表示,那么(20,-30)表示的位置是( 。
A、點(diǎn)AB、點(diǎn)BC、點(diǎn)CD、點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于F.
(1)求證:AD∥BC;
(2)若∠1=36°,求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,拋物線,y=x2+bx+c經(jīng)過A,B兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)點(diǎn)E是Rt△ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)若在拋物線的對(duì)稱軸上恰好存在唯一的點(diǎn)P,使△EFP是以EF為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);請(qǐng)確定此時(shí)點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)不透明的布袋中裝有5個(gè)大小、質(zhì)地完全相同的乒乓球,每個(gè)乒乓球上分別標(biāo)有1、2、3、4、5.小王先從布袋中隨機(jī)抽取一個(gè)乒乓球(不放回去),再從剩下的4個(gè)球中隨機(jī)抽取第二個(gè)乒乓球.
(1)請(qǐng)你列出小王抽取乒乓球的所有可能的結(jié)果;
(2)求兩次取得的乒乓球上的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)x取哪些整數(shù)值時(shí),不等式5x-9<3x-3和1-2x≤x-1都成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=
1
8
ax2-ax-6(a>0).
(1)該拋物線的對(duì)稱軸是直線
 

(2)若拋物線與y軸交于點(diǎn)D,與x軸交于點(diǎn)A、B,點(diǎn)C為拋物線的頂點(diǎn),過點(diǎn)C作CF⊥y軸于點(diǎn)F,直線CD交x軸于點(diǎn)E,如圖.
①若DF=CF,求a的值.
②是否存在實(shí)數(shù)a,使EO=CF?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在方格紙中,每個(gè)小正方形的邊長為1,有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上),點(diǎn)C在直線l上.
(1)作出△ABC關(guān)于直線l對(duì)稱的圖形△A1B1C1(A與A1對(duì)應(yīng),B與B1對(duì)應(yīng));
(2)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=60°,∠ABC、∠ACB所對(duì)的b、c滿足:b2+c2-2(b+c)+2=0.
(1)試證:△ABC是邊長為1的等邊三角形;
(2)若b、c兩邊上的中線BD、CE交于點(diǎn)O,求OD:OB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案