【題目】在平面直角坐標系xOy中,反比例函數(shù)的圖象和都在第一象限內(nèi),,軸,且,點的坐標為

1)若反比例函數(shù)的圖象經(jīng)過點B,求此反比例函數(shù)的解析式;

2)若將向下平移m>0)個單位長度,,兩點的對應(yīng)點同時落在反比例函數(shù)圖象上,求的值.

【答案】1; (2) .

【解析】

(1)根據(jù)已知求出BC點坐標,然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;

(2)表示出相應(yīng)的平移后AC坐標,將之代入反比例函數(shù)表達式即可求解.

1,,點,

,.

∵反比例函數(shù)的圖象經(jīng)過點B

∴此反比例函數(shù)的解析式為.

(2)向下平移個單位長度,設(shè)AC的對應(yīng)點分別為A',C'.

A'(3,5-m)C'(5,-m).

A',C'兩點同時落在反比例函數(shù)圖象上,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形邊長均為1的方格紙中有線段AB,點A、B均在小正方形的頂點上.

1)以AB為一邊畫RtABC(C在小正方形的頂點上),使ABC的周長為+5;

2)在(1)的條件下,以AB為一邊作ABD,(點D在小正方形的頂點上),使,且ABD的面積為2;連接CD,并直接寫出∠ADC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=x2+2x+3與一次函數(shù)y=3x+5

1)兩個函數(shù)圖象相交嗎?若相交,有幾個交點?

2)將直線y=3x+5向下平移k個單位,使直線與拋物線只有一個交點,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的特征線”.例如,M(1,3)的特征線有:x=1y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B.C兩點,頂點D在正方形內(nèi)部.

(1)寫出點M2,3)任意兩條特征線___________________

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,點EAD的中點,且AE1,連接BE,分別以B、E為圓心,以大于的長為半徑作弧,兩弧交于點M、N,若直線MN恰好過點C,則AB的長度為( 。

A.B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列有個結(jié)論:①;②;③;④.請你將正確結(jié)論的番號都寫出來_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市從不同學(xué)校隨機抽取100名初中生對使用數(shù)學(xué)教輔用書的冊數(shù)進行調(diào)查,統(tǒng)計結(jié)果如下:

冊數(shù)

0

1

2

3

人數(shù)

10

20

30

40

關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A.眾數(shù)是2B.中位數(shù)是2

C.平均數(shù)是3D.方差是1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,點D在邊AB上,且,動點P從點A出發(fā),以每秒1個單位長度的速度向終點B運動,以PD為邊向上做正方形,設(shè)點P運動的時間為秒,正方形重疊部分的面積為

1)用含有的代數(shù)式表示線段的長.

2)當點落在的邊上時,求的值.

3)求的函數(shù)關(guān)系式.

4)當點P在線段AD上運動時,做點N關(guān)于CD的對稱點,當的某一個頂點的連線平分的面積時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一手機支架,其中AB8cm,底座CD1cm,當點A正好落在桌面上時如圖2所示,∠ABC80°,∠A60°.

1)求點B到桌面AD的距離;

2)求BC的長.(結(jié)果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,1.73

查看答案和解析>>

同步練習(xí)冊答案