【題目】如圖,A、BC、D為矩形的4個頂點,AB16cmBC6cm,動點PQ分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.

(1)若點P從點A移動到點B停止,點PQ分別從點A、C同時出發(fā),問經(jīng)過2sPQ兩點之間的距離是多少cm?

(2)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm

(3)若點P沿著ABBCCD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間△PBQ的面積為12cm2?

【答案】1PQ=6cm;(2ss;(3)經(jīng)過4秒或6△PBQ的面積為 12cm2

【解析】

試題(1)作PE⊥CDE,表示出PQ的長度,利用PE2+EQ2=PQ2列出方程求解即可;

2)設(shè)x秒后,點P和點Q的距離是10cm.在Rt△PEQ中,根據(jù)勾股定理列出關(guān)于x的方程(16-5x2=64,通過解方程即可求得x的值;

3)分類討論:當(dāng)點PAB上時;當(dāng)點PBC邊上;當(dāng)點PCD邊上時.

試題解析:(1)過點PPE⊥CDE

則根據(jù)題意,得

EQ=16-2×3-2×2=6cm),PE=AD=6cm;

Rt△PEQ中,根據(jù)勾股定理,得

PE2+EQ2=PQ2,即36+36=PQ2

∴PQ=6cm;

經(jīng)過2sPQ兩點之間的距離是6cm;

2)設(shè)x秒后,點P和點Q的距離是10cm

16-2x-3x2+62=102,即(16-5x2=64,

∴16-5x=±8

∴x1=,x2=;

經(jīng)過ssPQ兩點之間的距離是10cm;

3)連接BQ.設(shè)經(jīng)過ys△PBQ的面積為12cm2

當(dāng)0≤y≤時,則PB=16-3y,

PBBC=12,即×16-3y×6=12,

解得y=4;

當(dāng)x≤時,

BP=3y-AB=3y-16,QC=2y,則

BPCQ=3y-16×2y=12,

解得y1=6,span>y2=-(舍去);

x≤8時,

QP=CQ-PQ=22-y,則

QPCB=22-y×6=12,

解得y=18(舍去).

綜上所述,經(jīng)過4秒或6△PBQ的面積為 12cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形中,厘米,厘米().動點同時從點出發(fā),分別沿,運動,速度是厘米/秒.過作直線垂直于,分別交,.當(dāng)點到達(dá)終點時,點也隨之停止運動.設(shè)運動時間為秒.

(1)若厘米,秒,求PM的長度;

(2)若厘米,求出某個時間,使⊿PNB∽⊿PAD,并求出它們的相似比;

(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°,AB=5AC=3,點P為邊AB上一動點(且點P不與點A,B重合),PEBCE,PFACF,點MEF中點,則PM的最小值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點C逆時針旋轉(zhuǎn)得到ABC,MBC的中點,PAB的中點,連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC6,BD8,M、N分別是BC、CD上的動點,P是線段BD上的一個動點,則PMPN的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,點EBC延長線上,ECBC,連接DE,ACACAD于點A、

1)求證:四邊形ACED是矩形;

2)連接BD,交AC于點F.若AC2AD,猜想EBDE的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為不稱職,當(dāng) 時為基本稱職,當(dāng) 時為稱職,當(dāng) 時為優(yōu)秀”.根據(jù)以上信息,解答下列問題:

(1)補全折線統(tǒng)計圖和扇形統(tǒng)計圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明學(xué)校門前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來到山腳下進(jìn)行測量.測量方案如下:如圖,首先,小明站在地面上的點A處,測得電線桿頂端點P的仰角是45;然后小明向前走6米到達(dá)點B處,測得電線桿頂端點P和電線桿底端點Q的仰角分別是6030,設(shè)小明的眼睛到地面的距離為1.6.請根據(jù)以上測量的數(shù)據(jù),計算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:

那么關(guān)于它的圖象,下列判斷正確的是( 。

A. 開口向上 B. x軸的另一個交點是(3,0

C. y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的

查看答案和解析>>

同步練習(xí)冊答案