【題目】先化簡再求值:當a=9時,求a+的值,甲乙兩人的解答如下:

甲的解答為:原式=a+=a+(1-a)=1.

乙的解答為:原式=a+=a+(a-1)=2a-1=17.

兩種解答中,_____的解答是錯誤的,錯誤的原因是當a=9時______.

【答案】甲;1-a.

【解析】

首先對根號里的數(shù)或代數(shù)式通過完全平方公式、平方差公式等進行化簡,注意在去掉根號時,要對化簡后的結果帶上絕對值,再根據(jù)已知參數(shù)的值看看絕對值里的代數(shù)式與零的大小關系,最后去掉絕對值即可得到最簡結果,再將參數(shù)的值代入即可.

解:甲是錯誤的,,沒有根據(jù)a的取值正確的去掉絕對值符號.

理由:a+,由完全平方式,a+,化簡,a+|1a|

a=9,1-a0,故對a+|1a|去掉絕對值符號,a-1+a,

合并同類項,得:2a-1,

a=9代入2a-1,2×9-1=17

所以甲的答案錯誤,錯誤的原因是沒有根據(jù)a的取值正確的去掉絕對值符號.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時間之間的函數(shù)關系式是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BCBEAC于點E,ADBC于點D,∠BAD=45°,ADBE交于點F,連接CF.求證:BF=2AE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如下圖, ABCD,點E,F分別為AB,CD上一點.

(1) 在ABCD之間有一點M(點M不在線段EF上),連接MEMF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關系. 請補全圖形,并在圖形下面寫出相應的數(shù)量關系,選其中一個進行證明.

(2)如下圖,在AB,CD之間有兩點MN,連接ME,MN,NF,請選擇一個圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表中有兩種移動電話計費方式:

月使用費()

主叫限定時間(分鐘)

主叫超時費(/分鐘)

被叫

方式一

65

160

0.25

免費

方式二

100

380

0.19

免費

說明:月使用費固定收取,主叫不超限定時間不再收費,主叫超時部分加收超時費;被叫免費.

(1)若李杰某月主叫通話時間為200分鐘則他按方式一計費需   元,按方式二計費需   元;若他按方式二計費需103.8元,則主叫通話時間為   分鐘;

(2)是否存在某主叫通話時間t(分鐘),按方式一和方式二的計費相等,若存在,請求出t的值;若不存在,請說明理由;

(3)請你通過計算分析后,直接給出當月主叫通話時間t(分鐘)滿足什么條件時,選擇方式一省錢;當每月主叫通話時間t(分鐘)滿足什么條件時,選擇方式二省錢.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OEAB于O,若BOD=40°,則不正確的結論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù) 的圖象與性質(zhì),下列說法正確的是( )
A.對稱軸是直線 ,最小值是
B.對稱軸是直線 ,最大值是
C.對稱軸是直線 ,最小值是
D.對稱軸是直線 ,最大值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,PQ分別是BC,AC上的點,PRABPSAC,垂足分別是R,SAQ=PQ,PR=PS,下面三個結淪:AS=AR:②QPAR;③△BRP≌△CSP.其中正確的是( )

A. ①③ B. ②③ C. ①② D. ①②③

查看答案和解析>>

同步練習冊答案