分析 由平行四邊形的性質(zhì)得出CD=AB=3,BC=AD=4,AB∥CD,由平行線的性質(zhì)得出∠GCE=∠B=60°,證出EF⊥DG,由含30°角的直角三角形的性質(zhì)得出CG=$\frac{1}{2}$CE=1,求出EG=$\sqrt{3}$CG=$\sqrt{3}$,DG=CD+CG=4,由勾股定理求出DE即可.
解答 解:∵四邊形ABCD是平行四邊形,
∴CD=AB=3,BC=AD=4,AB∥CD,
∴∠GCE=∠B=60°,
∵E是BC的中點(diǎn),
∴CE=BE=2,
∵EF⊥AB,
∴EF⊥DG,
∴∠G=90°,
∴CG=$\frac{1}{2}$CE=1,
∴EG=$\sqrt{3}$CG=$\sqrt{3}$,DG=CD+CG=3+1=4,
∴DE=$\sqrt{E{G}^{2}+D{G}^{2}}$=$\sqrt{(\sqrt{3})^{2}+{4}^{2}}$=$\sqrt{19}$;
故答案為:$\sqrt{19}$.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、含30°角的直角三角形的性質(zhì)、勾股定理;熟練掌握平行四邊形的性質(zhì),由含30°角的直角三角形的性質(zhì)求出CG是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{4}{15}$ | C. | $\frac{4}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com