分析 (1)根據(jù)當(dāng)x=0和x=5時(shí)所對應(yīng)的函數(shù)值相等,可得(5,c),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)聯(lián)立拋物線與直線,可得方程組,根據(jù)解方程組,可得B、C點(diǎn)坐標(biāo),根據(jù)勾股定理,可得AB的長;
(3)根據(jù)線段中點(diǎn)的性質(zhì),可得M點(diǎn)的坐標(biāo),根據(jù)旋轉(zhuǎn)的性質(zhì),可得MN與BM的關(guān)系,根據(jù)平行四邊形的判定,可得答案.
解答 解:(1)當(dāng)x=0時(shí),y=c,即(0,c).
由當(dāng)x=0和x=5時(shí)所對應(yīng)的函數(shù)值相等,得(5,c).
將(5,c)(1,0)代入函數(shù)解析式,得
$\left\{\begin{array}{l}{-\frac{25}{2}+5b+c=c}\\{-\frac{1}{2}+b+c=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{b=\frac{5}{2}}\\{c=-2}\end{array}\right.$.
故拋物線的解析式為y=-$\frac{1}{2}$x2+$\frac{5}{2}$x-2;
(2)聯(lián)立拋物線與直線,得
$\left\{\begin{array}{l}{y=-\frac{1}{2}{x}^{2}+\frac{5}{2}x-2}\\{y=-x+3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,$\left\{\begin{array}{l}{x=5}\\{y=-2}\end{array}\right.$,
即B(2,1),C(5,-2).
由勾股定理,得
AB=$\sqrt{(2-1)^{2}+(1-0)^{2}}$=$\sqrt{2}$;
(3)如圖:
,
四邊形ABCN是平行四邊形,
證明:∵M(jìn)是AC的中點(diǎn),
∴AM=CM.
∵點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,
∴BM=MN,
∴四邊形ABCN是平行四邊形.
點(diǎn)評 本題考查了二次函數(shù)綜合題,利用函數(shù)值相等得出點(diǎn)(5,c)是解題關(guān)鍵,又利用了待定系數(shù)法求函數(shù)解析式;利用解方程組得出交點(diǎn)坐標(biāo),又利用了勾股定理;利用了平行四邊形的判定:對角線互相平分的四邊形是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com