A. | 2 | B. | $\frac{10}{3}$ | C. | $\frac{15}{8}$ | D. | $\frac{15}{2}$ |
分析 根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)求出AE=BE,根據(jù)勾股定理求出AE,再根據(jù)勾股定理求出DE即可.
解答 解:在Rt△ACB中,由勾股定理得:BC=$\sqrt{{5}^{2}-{3}^{2}}$=4,
連接AE,
從作法可知:DE是AB的垂直平分線,
根據(jù)性質(zhì)得出AE=BE,
在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,
即32+(4-AE)2=AE2,
解得:AE=$\frac{25}{8}$,
在Rt△ADE中,AD=$\frac{1}{2}$AB=$\frac{5}{2}$,由勾股定理得:DE2+($\frac{5}{2}$)2=($\frac{25}{8}$)2,
解得:DE=$\frac{15}{8}$.
故選C.
點(diǎn)評(píng) 本題考查了線段垂直平分線性質(zhì),勾股定理的應(yīng)用,能靈活運(yùn)用勾股定理得出方程是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2+x-3 | B. | y=2(x-1)2-3 | C. | y=$\frac{1}{2}$(x-1)(x+1) | D. | y=3x2-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 無數(shù)個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<0 | B. | x<3 | C. | x<4 | D. | x>4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1-$\sqrt{2}$) | B. | (-2,$\sqrt{2}-1$) | C. | (1-$\sqrt{2}$,-2) | D. | ($\sqrt{2}-1,-2$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com