【題目】已知二次函數(shù)的部分圖象如圖所示,拋物線與軸的一個(gè)交點(diǎn)坐標(biāo)為,對(duì)稱軸為直線

,求的值;

若實(shí)數(shù),比較的大小,并說(shuō)明理由.

【答案】當(dāng)時(shí),,理由見(jiàn)解析.

【解析】

(1)已知拋物線對(duì)稱軸為x=1,由拋物線對(duì)稱性可知,其與x軸的另一個(gè)交點(diǎn)為(-1,0),x=-1代入函數(shù)的解析式即可得到c-b的值;(2)當(dāng)m≠1時(shí),a+b>m(am+b),把x=1x=m分別代入函數(shù)的解析式得到關(guān)于a、b、c的關(guān)系式,因?yàn)轫旤c(diǎn)的橫坐標(biāo)為1,所以當(dāng)x=1時(shí)函數(shù)取最大值y=a+b+c,即a+b+c>am2+bm+c,進(jìn)而證明a+b>m(am+b).

由拋物線對(duì)稱性可知,其與軸的另一個(gè)交點(diǎn)為,

當(dāng)時(shí),解得

當(dāng)時(shí),

理由如下:

當(dāng)時(shí),,

當(dāng)時(shí),,

,

∴當(dāng)時(shí),函數(shù)取最大值,

∴當(dāng)時(shí),,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC與△A'B'C在平面直角坐標(biāo)系中的位置如圖.

1)分別寫(xiě)出B、B'的坐標(biāo):B______;B______;

2)若點(diǎn)Pa,b)是△ABC內(nèi)部一點(diǎn),則平移后△A'B'C內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為______;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為菱形ABCD對(duì)角線的交點(diǎn),M是射線CA上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)C、O、A都不重合),過(guò)點(diǎn)A、C分別向直線BM作垂線段,垂足分別為E、F,連接OEOF

1)①依據(jù)題意補(bǔ)全圖形;

②猜想OEOF的數(shù)量關(guān)系為_________________.

2)小東通過(guò)觀察、實(shí)驗(yàn)發(fā)現(xiàn)點(diǎn)M在射線CA上運(yùn)動(dòng)時(shí),(1)中的猜想始終成立.

小東把這個(gè)發(fā)現(xiàn)與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明(1)中猜想的幾種想法:

想法1:由已知條件和菱形對(duì)角線互相平分,可以構(gòu)造與OAE全等的三角形,從而得到相等的線段,再依據(jù)直角三角形斜邊中線的性質(zhì),即可證明猜想;

想法2:由已知條件和菱形對(duì)角線互相垂直,能找到兩組共斜邊的直角三角形,例如其中的一組OABEAB,再依據(jù)直角三角形斜邊中線的性質(zhì),菱形四邊相等,可以構(gòu)造一對(duì)以OEOF為對(duì)應(yīng)邊的全等三角形,即可證明猜想.

……

請(qǐng)你參考上面的想法,幫助小東證明(1)中的猜想(一種方法即可).

3)當(dāng)∠ADC=120°時(shí),請(qǐng)直接寫(xiě)出線段CF,AE,EF之間的數(shù)量關(guān)系是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過(guò)點(diǎn) A,BD⊥m 于點(diǎn) D,CE⊥m 于點(diǎn) E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點(diǎn)都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有公共頂點(diǎn)的△和△都是等邊三角形,且.

(1)如圖1,當(dāng)點(diǎn)恰好在的延長(zhǎng)線上時(shí),連結(jié),分別交,于點(diǎn),

①求證:

②連接,求證:;

(2)2是由圖1中的△繞點(diǎn)順時(shí)針旋轉(zhuǎn)角()得到,使得恰好經(jīng)過(guò)的中點(diǎn),試猜想線段,,之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問(wèn)題》時(shí),出示如圖1所示的長(zhǎng)方形紙條,其中,.然后在紙條上任意畫(huà)一條截線段,將紙片沿折疊,交于點(diǎn),得到.如圖2所示:

探究:

1)若______°;

2)改變折痕位置,始終是______三角形,請(qǐng)說(shuō)明理由;

應(yīng)用:

3)愛(ài)動(dòng)腦筋的小明在研究的面積時(shí),發(fā)現(xiàn)邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出的面積最小值為,此時(shí)的大小可以為______°;

4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了面積的最大值.請(qǐng)你求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車(chē)自駕出游。

[來(lái)

根據(jù)以上信息,解答下列問(wèn)題:

(1)設(shè)租車(chē)時(shí)間為小時(shí),租用甲公司的車(chē)所需費(fèi)用為元,租用乙公司的車(chē)所需費(fèi)用為元,分別求出關(guān)于的函數(shù)表達(dá)式;

(2)請(qǐng)你幫助小明計(jì)算并選擇哪個(gè)出游方案合算。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:

;;;;⑥當(dāng)時(shí),的增大而增大.

其中正確的說(shuō)法有________(寫(xiě)出正確說(shuō)法的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案