【題目】如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.
(1)求證:;
(2)若,求tan∠CED的值.
【答案】(1)見解析;(2)tan∠CED=
【解析】
(1)欲證明,只要證明即可;
(2)由,可得,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BDBE=BCBA,設(shè)AC=BC=x,則有,由此求出AC、CD即可解決問題.
(1)證明:如下圖,連接AE,
∵AD是直徑,
∴,
∴DC⊥AB,
∵AC=CB,
∴DA=DB,
∴∠CDA=∠CDB,
∵,,
∴∠BDC=∠EAC,
∵∠AEC=∠ADC,
∴∠EAC=∠AEC,
∴;
(2)解:如下圖,連接OC,
∵AO=OD,AC=CB,
∴OC∥BD,
∴,
∴,
設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,
∵∠BAD=∠BEC,∠B=∠B,
∴,
∴BDBE=BCBA,設(shè)AC=BC=x,
則有,
∴,
∴,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球和足球.已知購買20個籃球和40個足球的總金額為4600元;購買30個籃球和50個足球的總金額為6100元.
(1)每個籃球、每個足球的價格分別為多少元?
(2)若該校購買籃球和足球共60個,且購買籃球的總金額不超過購買足球的總金額,則該校最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣2x﹣3與x軸兩交點之間的距離為_____.拋物線頂點、與x軸正半軸和y軸的交點圍成的三角形面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,以OB為直徑畫圓M,過D作⊙M的切線,切點為N,分別交AC、BC于點E、F,已知AE=5,CE=3,則DF的長是( )
A. 3B. 4C. 4.8D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點A、B.點C的坐標(biāo)是(﹣1,0),拋物線y=ax2+bx﹣2經(jīng)過A、C兩點且交y軸于點D.點P為x軸上一點,過點P作x軸的垂線交直線AB于點M,交拋物線于點Q,連結(jié)DQ,設(shè)點P的橫坐標(biāo)為m(m≠0).
(1)求點A的坐標(biāo).
(2)求拋物線的表達式.
(3)當(dāng)以B、D、Q,M為頂點的四邊形是平行四邊形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,15個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點. 已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若E也在格點上,且∠AED=∠ACD,則cos∠AEC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點P從點A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點C運動,同時點Q從點B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點A運動,當(dāng)Q到達終點時,P停止移動,設(shè)△PQC的面積為S,運動時間為t秒,則能大致反映S與t的函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(A在B的右側(cè)).
(1)當(dāng)A(4,2)時,求反比例函數(shù)的解析式及B點的坐標(biāo);
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.請解答:
(1)點A、C的坐標(biāo)分別是 、 ;
(2)畫出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后的△AB'C';
(3)在(2)的條件下,求點C旋轉(zhuǎn)到點C'所經(jīng)過的路線長(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com