探究:
(1)如圖①,∠1+∠2與∠B+∠C有什么關系?為什么?
(2)把圖①△ABC沿DE折疊,得到圖②,填空:∠1+∠2__________∠B+∠C(填“>”“<”“=”),當∠A=40°時,∠B+∠C+∠1+∠2=__________;
(3)如圖③,是由圖①的△ABC沿DE折疊得到的,如果∠A=30°,則x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣__________=__________,猜想∠BDA+∠CEA與∠A的關系為__________.
【考點】翻折變換(折疊問題).
【專題】探究型.
【分析】根據(jù)三角形內(nèi)角是180度可得出,∠1+∠2=∠B+∠C,從而求出當∠A=40°時,∠B+∠C+∠1+∠2=140×2=280°,有以上計算可歸納出一般規(guī)律:∠BDA+∠CEA=2∠A.
【解答】解:(1)根據(jù)三角形內(nèi)角是180°可知:∠1+∠2=180°﹣∠A,∠B+∠C=180°﹣∠A
∴∠1+∠2=∠B+∠C
(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°
∴∠1+∠2=∠B+∠C
當∠A=40°時,∠B+∠C+∠1+∠2=140×2=280°
(3)如果∠A=30°,則x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°
所以∠BDA+∠CEA與∠A的關系為:∠BDA+∠CEA=2∠A
【點評】本題考查圖形的翻折變換和三角形,四邊形內(nèi)角和定理,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
科目:初中數(shù)學 來源: 題型:
如圖,△ABC中,P為AB上的一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能滿足△APC和△ACB相似的條件是( )
A.①②④ B.①③④ C.②③④ D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖:BO、CO是∠ABC,∠ACB的兩條角平分線,∠A=100°,則∠BOC的度數(shù)為( )
A.80° B.90° C.120° D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;
(3)寫出點B的坐標__________;
(2)請求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一個圓桶兒,底面直徑為16cm,高為18cm,則一只小蟲底部點A爬到上底B處,則小蟲所爬的最短路徑長是(π取3)( )
A.20cm B.30cm C.40cm D.50cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,∠ACB=80°,AD是BC邊上的高,AE平分∠BAC,∠BAE=30°
(1)求∠ABC的度數(shù);
(2)求∠DAE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com