科目: 來源: 題型:
在直角坐標(biāo)系中,已知點(diǎn)A(-2,0)、B(0,4)、C(0,3),過點(diǎn)C作直線交x軸于點(diǎn)D,使得以D、O、C為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)D的坐標(biāo)。
查看答案和解析>>
科目: 來源: 題型:
深圳大運(yùn)會(huì)期間,某賓館有若干間住房,住宿記錄提供了如下信
息:①7月20日全部住滿,一天住宿費(fèi)收入為3600元;②7月21日有10間房空著,一天住宿費(fèi)收入為2800元;③該賓館每間房每天收費(fèi)標(biāo)準(zhǔn)相同。
1.求該賓館共有多少間住房,每間住房每天收費(fèi)多少元?
2.通過市場(chǎng)調(diào)查發(fā)現(xiàn),每個(gè)住房每天的定價(jià)每增加10元,就會(huì)有一個(gè)房間空閑;己知該賓館空閑房間每天每間費(fèi)用10元,有游客居住房間每天每間再增加20元的其他費(fèi)用,問房?jī)r(jià)定為多少元時(shí),該賓館一天的利潤(rùn)最大?
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C、P的坐標(biāo)分別為(0,1)、
(-1,0)、(1,0)、(-1,-1)。
1.求經(jīng)過A、B、C三點(diǎn)的拋物線的表達(dá)式;
2.以P為位似中心,將△ABC放大,使得放大后的△A1B1C1與△OAB對(duì)應(yīng)線段的比為3:1,請(qǐng)?jiān)谟覉D網(wǎng)格中畫出放大后的△A1B1C1;(所畫△A1B1C1與△ABC在點(diǎn)P同側(cè));
3.經(jīng)過A1、B1、C1三點(diǎn)的拋物線能否由(1)中的拋物線平移得到?請(qǐng)說明理由。
查看答案和解析>>
科目: 來源: 題型:
如圖,拋物線y=x2+bx+c經(jīng)過A(-1,0),B(4,5)兩點(diǎn),請(qǐng)
解答下列問題:
1.求拋物線的解析式;
2.若拋物線的頂點(diǎn)為點(diǎn)D,對(duì)稱軸所在的直線交x軸于點(diǎn)E,連接AD,點(diǎn)F為AD的中點(diǎn),求出線段EF的長(zhǎng)。
注:拋物線y=ax2+bx+c的對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,)。
查看答案和解析>>
科目: 來源: 題型:閱讀理解
某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長(zhǎng)AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長(zhǎng)。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離。閱讀后回答下列問題:
1.方案(I)是否可行?為什么?
2.方案(II)是否切實(shí)可行?為什么?
3.方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長(zhǎng)?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目: 來源: 題型:
如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖(2)。
1.問:始終與△AGC相似的三角形有 及 ;
2.設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);
3.問:當(dāng)x為何值時(shí),△AGH是等腰三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com