科目: 來源: 題型:
【題目】如圖,在Rt△ABC,∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,要使△ABC和△QPA全等,則AP= ______ .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD,點M是邊BA延長線上的動點(不與點A重合),且AM<AB,△CBE由△DAM平移得到.若過點E作EH⊥AC,H為垂足,則有以下結(jié)論:①點M位置變化,使得∠DHC=60°時,2BE=DM;②無論點M運動到何處,都有DM=HM;③無論點M運動到何處,∠CHM一定大于135°.其中正確結(jié)論的序號為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】聯(lián)想三角形外心的概念,我們可引入如下概念。
定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。
舉例:如圖1,若PA=PB,則點P為△ABC的準外心。
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD=AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,射線OC、OD在∠AOB內(nèi)部,∠AOB=,∠COD=,分別作∠AOC和∠BOD的平分線OM、ON,
(1)當=130°,=40°時,請你填空:∠1+∠3=______°,∠MON=______°;
(2)聰明的小芳通過探究發(fā)現(xiàn),當射線OC、OD的位置在∠AOB內(nèi)變化時,∠MON與、之間總滿足∠MON=,你是否認同她的這一結(jié)論?請說明理由;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB=12,動點P從A出發(fā),以每秒2個單位的速度沿射線AB運動,M為AP的中點.
(1)出發(fā)多少秒后,PB=2AM?
(2)當P在線段AB上運動時,試說明2BM﹣BP為定值.
(3)當P在AB延長線上運動時,N為BP的中點,下列兩個結(jié)論:①MN長度不變;②MA+PN的值不變,選擇一個正確的結(jié)論,并求出其值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為 ,線段AD、BE之間的關(guān)系 .
(2)拓展探究:如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.①請判斷∠AEB的度數(shù),并說明理由;②當CM=5時,AC比BE的長度多6時,求AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列運算及判斷正確的是( )
A. ﹣5×÷(﹣)×5=1
B. 方程(x2+x﹣1)x+3=1有四個整數(shù)解
C. 若a×5673=103,a÷103=b,則a×b=
D. 有序數(shù)對(m2+1,m)在平面直角坐標系中對應(yīng)的點一定在第一象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com