求證:(1-tanα)=(cos2α-cotα)(sec2α+tanα).
考點(diǎn):三角函數(shù)恒等式的證明
專題:證明題
分析:首先要證明等式(1-tanα)=(cos2α-cotα)(sec2α+1tanα),就必須了解各種三角函數(shù)之間的轉(zhuǎn)化關(guān)系,然后把它們都換成正余弦函數(shù)的形式,再求證.
解答: 解:等式左邊:(1-tanα)=1-
sinα
cosα
=
cosα-sinα
cosα
..
等式的右邊(cos2α-cotα)(sec2α+tanα)=(cos2α-
cosα
sinα
)(
1
cos2α
+
sinα
coaα
)
=
cosα-sinα
cosα

所以左邊等于右邊,
故(1-tanα)=(cos2α-cotα)(sec2α+tanα)成立.
點(diǎn)評(píng):此題主要考查三角函數(shù)恒等式的證明問(wèn)題,其中運(yùn)用到各種三角函數(shù)間的轉(zhuǎn)化關(guān)系,在做題的時(shí)候要把它們轉(zhuǎn)化統(tǒng)一再求證.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)電梯在每層停的概率相等且相互獨(dú)立,則十層電梯從低層到頂層停不少于3次的概率是多少?停幾次概率最大?數(shù)學(xué)期望是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-mx2+(m2-4)x,x∈R,當(dāng)m=3時(shí),則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為(  )
A、9x+3y-20=0
B、9x+3y-2=0
C、9x+3y-10=0
D、9x+3y+20=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l與平面a內(nèi)的兩條直線都垂直,則直線l與平面a的位置關(guān)系是( 。
A、平行B、垂直
C、在平面a內(nèi)D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sinxcosx+
3
cos2x
的最小正周期為
 
;最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a≥0,b≥0,a+b=1,且x1,x2為正數(shù),y1=ax1+bx2,y2=bx1+ax2,則y1y2與x1x2的大小關(guān)系是( 。
A、y1y2≥x1x2
B、y1y2≤x1x2
C、y1y2>x1x2
D、y1y2<x1x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年北京市高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)設(shè)函數(shù),其中常數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間及單調(diào)性;

(Ⅱ)若當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年安徽省淮北市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

(3)若,使成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年貴州省高三模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)【選修4—5:不等式選講】

已知函數(shù).

(1)求的解集;

(2)設(shè)函數(shù),,若對(duì)任意的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案