【題目】已知圓的圓心為,點是圓上的動點,點,線段的垂直平分線交點.

(1)求點的軌跡的方程;

(2)過點作斜率不為0的直線與(1)中的軌跡交于兩點,點關于軸的對稱點為,連接軸于點,求

【答案】(1);(2).

【解析】分析:(1)利用待定系數(shù)法求出點在以、為焦點,長軸長為4的橢圓上,點的軌跡的方程為.(2)先求出點Q的坐標,再利用兩點間的距離公式求

詳解:(1)由題意知,線段的垂直平分線交點,所以

,

∴點在以為焦點,長軸長為4的橢圓上,

,,,

∴點的軌跡的方程為

(2)依題意可設直線方程為,將直線方程代入,

化簡得,

設直線與橢圓的兩交點為,,

,得,①

,,②

因為點關于軸的對稱點為,則,可設

所以,

所以所在直線方程為,

,得,③

把②代入③,得

點的坐標為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱臺的底面是正三角形,平面平面.

(1)求證:;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是線段DE上的動點.

(1)試確定點M的位置,使BE∥平面MAC,并說明理由;

(2)在(1)的條件下,四面體E-MAC的體積為3,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,圓

1)若直線過點且在兩坐標軸上截距之和等于,求直線的方程;

2)設是圓上的動點,求為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點..

1)求證:平面平面;

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

(Ⅰ)討論函數(shù)的單調增區(qū)間;

(Ⅱ)是否存在負實數(shù)a,使,函數(shù)有最小值-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某校學生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進行調查,已知該校的高一、高二、高三這三個年級分別有186、6個班級.

(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);

(Ⅱ)若從抽取的5個班級中隨機抽取2個班級進行調查結果的對比,求這2個班級中至少有1個班級來自高一年級的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設矩形所在平面與梯形所在平面相交于.,.

1)求證:;

2)若,求與面所成角的正弦值.

查看答案和解析>>

同步練習冊答案