已知集合A={x||x|≥1},函數(shù)g(x)=lg[x•(2-x)]的定義域?yàn)锽.
(Ⅰ)求集合A,B.
(Ⅱ)求A∩B.
考點(diǎn):絕對(duì)值不等式的解法,交集及其運(yùn)算,函數(shù)的定義域及其求法
專(zhuān)題:計(jì)算題,不等式的解法及應(yīng)用
分析:(Ⅰ)利用絕對(duì)值不等式的解法,求出集合A,利用真數(shù)大于0,即可求集合B.
(Ⅱ)利用集合A,B,可求A∩B.
解答: 解:(Ⅰ)由題A={x||x|≥1}=(-∞,-1]∪[1,+∞),…(4分)
由x•(2-x)>0解得0<x<2,即B=(0,2)…(10分)
(Ⅱ)A∩B=[1,2).…(13分)
點(diǎn)評(píng):本題考查不等式的解法,考查集合的運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是射線y=2(x>1)上一點(diǎn).過(guò)P作直線MN,交拋物線y2=4x于M,N兩點(diǎn),使點(diǎn)P平分線段MN.
(Ⅰ)求直線MN的斜率;
(Ⅱ)直線l:y=x+m與拋物線y2=4x無(wú)公共點(diǎn),若存在一個(gè)正方形ABCD,使點(diǎn)A,B在直線l上,點(diǎn)C,D在拋物線y2=4x上,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosxcos(x-θ)-
1
2
cosθ(0<θ<π),且當(dāng)x=
π
3
時(shí)f(x)取得最大值.
(1)求θ的值;
(2)當(dāng)x∈[
π
6
,a]時(shí)f(x)的值域?yàn)閇
1
4
1
2
],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=-x2+2|x-a|.
(1)若f(x)為偶函數(shù),求a的值;
(2)若a=
1
2
,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax-1在x=-1處取得極值.
(1)求實(shí)數(shù)a;
(2)當(dāng)x∈[-2,0],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若滿足sinBsinC-cosBcosC-
3
2
=0.
(1)求角A的大。
(2)現(xiàn)給出下列三個(gè)條件:
①a=1;②2c-(
3
+1)b=0;③B=45°.
試從中再選擇兩個(gè)條件以確定△ABC,求出你所確定的△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是公比不為1的等比數(shù)列,a4,a10,a7為等差數(shù)列,則數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A、B、C的對(duì)邊,且c2+ab=a2+b2,則角C的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足
2x+y-2≥0
x-2y+k≥0
x-1≤0
,若目標(biāo)函數(shù)z=3x-2y的取值范圍是[-4,3],則常數(shù)k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案