已知角α的終邊上一點(diǎn)P(3a,4a)(其中a≠0),則cosα=
 
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由條件利用任意角的三角函數(shù)的定義,求得cosα 的值.
解答: 解:∵角α的終邊上一點(diǎn)P(3a,4a)(其中a≠0),∴|OP|=
(3a)2+(4a)2
=5|a|=±5a,
∴cosα=
x
r
=
3a
±5a
3
5
 
故答案為:±
3
5
點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,兩點(diǎn)間的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
5
=1上任意一點(diǎn)P,A1,A2是橢圓的左、右頂點(diǎn),設(shè)直線PA1,PA2斜率分別為k PA1,k PA2,則k PA1•k PA2=
 
,現(xiàn)類比上述求解方法,可以得出以下命題:已知雙曲線
x2
a2
-
y2
b2
=1上任意一點(diǎn)P,A1,A2是雙曲線的左、右頂點(diǎn),設(shè)直線PA1,PA2斜率分別為k PA1,k PA2,則k PA1•k PA2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=
4
3
an-
2
3
(n∈N+),則a1=
 
,an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個(gè)正三棱錐的底面邊長(zhǎng)為6,且側(cè)棱長(zhǎng)為3
2
,那么這個(gè)三棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosx=
3
5
,x∈(-
π
2
,0),則
.
sinxcosx
11
.
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①“?x0∈R,使得x02-x0+1<0”的否定是“?x∈R,使得x2-x+1≥0”;
a
b
>0是向量
a
,
b
的夾角為銳角的充要條件;
③設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿足acosB-bcosA=
3
5
c,則
tanA
tanB
=4;
④記集合M={1,2,3},N={1,2,3,4},定義映射f:M→N,則從中任取一個(gè)映射滿足“由點(diǎn)A(1,f(1)),B(2,f(2)),C(3,f(3))構(gòu)成△ABC且AB=BC”的概率為
3
16

以上命題正確的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)子區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱x0是f(x)的一個(gè)“開心點(diǎn)”,也稱f(x)在區(qū)間D上存在開心點(diǎn).若函數(shù)f(x)=ax2-2x-2a-
3
2
在區(qū)間[-3,-
3
2
]上存在開心點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、[-
1
4
,0]
C、[-
3
14
,0]
D、[-
3
14
,-
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在R上是減函數(shù),則y=f(|x-3|)的單調(diào)減區(qū)間是(  )
A、(-∞,+∞)
B、[3,+∞)
C、[-3,+∞)
D、(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α=2kπ-
π
5
(k∈Z),若角θ與角α的終邊相同,則y=
sinθ
|sinθ|
+
|cosθ|
cosθ
+
tanθ
|tanθ|
的值為( 。
A、1B、-1C、3D、-3

查看答案和解析>>

同步練習(xí)冊(cè)答案