y=xex+1的單調(diào)增區(qū)間為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)大于0,即可得到結(jié)論.
解答: 解:∵y=xex+1,
∴y′=ex+xex=(x+1)ex,
由y′=(x+1)ex>0,解得x>-1,
即函數(shù)的單調(diào)遞增區(qū)間為(-1,+∞),
故答案為:(-1,+∞)
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)區(qū)間的求解,利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系時(shí)即可得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知P為橢圓
x2
4
+
y2
3
=1上一點(diǎn),Q為直線
x=t
y=2t+6
上一點(diǎn),求PQ最小值;
(2)在極坐標(biāo)系,圓O:ρ=cosθ+sinθ,直線l:ρsin(θ-
π
4
)=
2
2
,θ∈(0,π),求直線l與圓O交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用適當(dāng)?shù)姆椒ū硎鞠铝屑希?br />(1)方程x(x2+2x+1)=0的解;
(2)不等式x-3>4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R,則函數(shù)f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}為等比數(shù)列,an>0,a10a11=e,則lna1+lna2+…+lna20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,BC=2,∠B=60°,當(dāng)S△ABC=
3
2
時(shí),sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(1+sinx)(1+cosx)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z+i=2-i,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2|x-2|-x+5的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案