如圖,在長(zhǎng)方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(1)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(2)若二面角A-B1E-A1的大小為30°,求AB的長(zhǎng).
考點(diǎn):用空間向量求平面間的夾角,與二面角有關(guān)的立體幾何綜合題
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)分別以AB,AD,AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,由題意,可先假設(shè)在棱AA1上存在一點(diǎn)P(0,0,z0),使得DP∥平面B1AE,求出平面B1AE法向量,利用法向量與直線DP的方向向量數(shù)量積為0,由此方程解出z0的值,若能解出,則說(shuō)明存在,若不存在符合條件的t的值,說(shuō)明不存在這樣的點(diǎn)P滿足題意.
(2)由題設(shè)條件,可求二面角的兩個(gè)平面的法向量,利用兩平面的夾角為30°,建立關(guān)于a的方程,解出a的值即可得出AB的長(zhǎng).
解答: 解:(1)分別以AB,AD,AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,
假設(shè)在棱AA1上存在一點(diǎn)P(0,0,z0)使得DP∥平面B1AE.此時(shí)
DP
=(0,-1,z0)

又設(shè)AB的長(zhǎng)度為a,平面B1AE的法向量
n
=(x,y,z)
,則
AB1
=(a,0,1),
AE
=(
a
2
,1,0)

n
平面B1AE,∴
n
AB1
n
AE
,
ax+z=0
ax
2
+y=0

取x=1,使得平面B1AE的一個(gè)法向量
n
=(1,
-a
2
,-a)
…(3分)
要使DP∥平面B1AE,只要
n
DP
,有
a
2
-az0=0
,解得z0=
1
2

又DP?平面B1AE,∴存在點(diǎn)P,滿足DP∥平面B1AE,此時(shí)AP=
1
2
.…(6分)
(2)連接A1D,B1C,由長(zhǎng)方體ABCD-A1B1C1D1及AA1=AD=1得AD1⊥A1D
∵B1C∥A1D,∴AD1⊥B1C
又由(1)知B1E⊥AD1,且B1C∩B1E=B1,
∴AD1⊥平面DCB1A1
AD1
是平面A1B1E的一個(gè)法向量,此時(shí)
AD1
=(0,1,1)
…(9分)
設(shè)
AD1
n
所成的角為θ,則cosθ=
n
AD1
|
n
|•|
AD1
|
=
-
a
2
-a
2
1+
a2
4
+a2

∵二面角A-B1E-A1的大小為30°
∴|cosθ|=cos30°,即
3a
2
2
1+
5a2
4
=
3
2
,解得a=2,即AB的長(zhǎng)為2.…(13分)
點(diǎn)評(píng):本題考查利用空間向量這一工具求二面角,證明線面平行,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系及空間位置關(guān)系與向量的對(duì)應(yīng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,且acosC+
1
2
c=b

(1)求角A的大;
(2)若a=
15
,b=4,求邊c的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中,E.F分別是AC.AB的中點(diǎn),△ABC,△PEF都是正三角形,PF⊥AB.
(Ⅰ)證明PC⊥平面PAB;
(Ⅱ)求二面角P-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC,PC的中點(diǎn).
(1)證明:AE⊥平面PAD;
(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為
3
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求證:平面PQB⊥平面PAD; 
(2)若二面角M-QB-C為30°,試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,五棱錐P-ABCDE中,PA⊥底面ABCDE,AB∥CD,AC∥ED,AE∥CB,∠ABC=45°,AB=PA=2
2
,BC=2AE=4.
(1)求點(diǎn)B到平面PCD的距離;
(2)求二面角P-BC-A的正弦值;
(3)在棱PA上是否存在一點(diǎn)M,使得DM∥面PBC,若存在,求出DM的長(zhǎng),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC內(nèi)接于圓O,若
CO 
AB
=2
BO
CA
,且|AB|=3,|CA|=6,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2(x2-9)的定義域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案