已知函數(shù)f(x)對任意的a、b∈R都有f(a+b)=f(a)+f(b)-1,且當x>0時,f(x)>1.求證:函數(shù)F(x)=f(x)-1為奇函數(shù).
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質及應用
分析:由題意令a=b=0,代入f(a+b)=f(a)+f(b)-1,求出f(0)的值,令a=x,b=-x,求得f(-x)=-f(x)+2,再根據(jù)奇函數(shù)的定義判斷即可.
解答: 證明:∵f(a+b)=f(a)+f(b)-1,
令a=b=0,
則f(0+0)=f(0)+f(0)-1,
∴f(0)=1,
令a=x,b=-x,
則f(x-x)=f(x)+f(-x)-1,
∴f(-x)=-f(x)+2,
∵F(x)=f(x)-1
∴F(-x)=f(-x)-1=-f(x)-1=-f(x)+2=-f(x)+1=-[f(x)-1]=-F(x),
∴函數(shù)F(x)=f(x)-1為奇函數(shù).
點評:本題考查了抽象函數(shù)的奇偶性的證明以及求值,主要利用賦值法,即根據(jù)結論給變量適當?shù)闹,代入恒成立的方程化簡即可?/div>
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某發(fā)射裝置上有一個特殊的按鍵,在發(fā)射裝置的屏幕上顯示正整數(shù)n時按下這個鍵,會等可能的將其替換為0~n-1中的任意一個數(shù),反復按這個鍵使得最終顯示0,我們把這一操作稱為“還原”操作.
(Ⅰ)設初始值為15,求在“還原”操作中出現(xiàn)9的概率;
(Ⅱ)當初始值為4時,進行“還原”操作,記操作次數(shù)為ξ,求ξ的概率分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義域在(0,+∞)上的增函數(shù),且滿足f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1),f(4)的值. 
(2)如果f(x)-f(x-3)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+2x,x<0
lnx,x>0

(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當x≥1時,證明:曲線f(x)與g(x)=x-1僅有一個公共點;
(Ⅲ)設A(x1,f(x1)),B(x2,f(x2))(x1<x2<0)為曲線f(x)上的兩點,且曲線f(x)在點A,B處的切線互相垂直,求x2-x1的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,BC=AC,AD=BD,E是AB的中點.
(1)求證:AB⊥平面CDE;
(2)設G為△ADC的重心,F(xiàn)是線段AE上一點,且AF=2FE.求證:FG∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學將一塊底邊長為5的等腰直角三角板按如圖所示的方式放置在平面直角坐標系上,其中∠OMN=
π
2
,函數(shù)f(x)=Asin(ωx),(A>0,ω>0),
(1)若函數(shù)f(x)在同一周期內的圖象過點O,M,N,求函數(shù)f(x)的解析式;
(2)若將該三角板繞原點按逆時針方向旋轉角α(0<α<
π
2
)
時;頂點M′,N′恰好同時落在曲線y=
k
x
(x≠0)上,求實數(shù)k的值;
(3)若當x∈[0,π]時,函數(shù)f(x)的圖象恰好都落在△OMN內(允許落在△OMN的邊界上),求當么取最大值時,函數(shù)g(x)=cos(ωx+A)在區(qū)間[0,π]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
2
[
2
sin(x-
π
4
)].
(1)求它的定義域和值域;
(2)求它的單調區(qū)間;
(3)判斷它的奇偶性;
(4)判斷它的周期性,如果是周期函數(shù),求出它的最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的通項公式為an=pn+q(n∈N*,p>0).數(shù)列{bn}定義如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bn}的前2m項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.
(Ⅰ)設正方體ABCD-A1B1C1D1 的棱長等于2,求三棱錐C-BED1的體積;
(Ⅱ)求證:平面EB1D⊥平面B1CD.

查看答案和解析>>

同步練習冊答案