甲乙兩隊進行排球比賽,已知在一局比賽中甲隊獲勝的概率是
2
3
,沒有平局.若采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊獲勝的概率等于(  )
A、
4
9
B、
20
27
C、
8
27
D、
16
27
考點:相互獨立事件的概率乘法公式
專題:應用題,概率與統(tǒng)計
分析:分兩種情況:①甲隊前2局連勝②甲隊在前2局與乙打成1:1而第3局取勝.加以討論并分別算出2種情況下的概率,再用概率的加法公式,即可得到本題的概率.
解答: 解:甲隊獲勝分2種情況
①第1、2兩局中連勝2場,概率為P1=
2
3
×
2
3
=
4
9

②第1、2兩局中甲隊失敗1場,而第3局獲勝,
概率為P2=C21
2
3
(1-
2
3
)×
2
3
=
8
27

因此,甲隊獲勝的概率為P=P1+P2=
20
27

故選:B.
點評:本題給出甲乙兩隊進行排球比賽的模型,求三局兩勝制比法下甲隊獲勝的概率,著重考查了概率的加法公式和相互獨立事件同時發(fā)生的概率等知識,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx和y=cosx都是遞減區(qū)間的是(  )
A、[2kπ-
1
2
π,2kπ]
B、[2kπ-π,2kπ-
1
2
π]
C、[2kπ+
1
2
π,2kπ+π]
D、[2kπ,2kπ+
1
2
π]其中k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x與y之間的一組數(shù)據(jù)為
x 1 2 3 4
y 1 5-a 3 7+a
則y與x的回歸直線方程
y
=
b
x+
a
必過定點(  )
A、(4,
3
2
B、(
5
2
,4)
C、(6,8)
D、(
5
2
,4+a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=sinx+1在x=π處的切線與直線ax+2y+1=0相互垂直,則實數(shù)a等于( 。
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=3,b=4,c=
13
,那么C等于( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+b,不等式xf(x)<0的解集為(1,3).
(Ⅰ)求實數(shù)a、b的值;
(Ⅱ)若關(guān)于x的方程f(2x)-k•2-x-k=0有兩個不相等的實數(shù)根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-x2+ax+b的圖象在點P(0,f(0))處的切線方程為y=3x-2.
(1)求實數(shù)a,b的值;   
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤c,求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:若對任意n∈N*,數(shù)列{an}的前n項和Sn都為完全平方數(shù),則稱數(shù)列{an}為“完全平方數(shù)列”;特別的,若存在n∈N*,使數(shù)列{an}的前n項和Sn為完全平方數(shù),則稱數(shù)列{an}為“部分平方數(shù)列”.
(1)若數(shù)列{an}為“部分平方數(shù)列”,且an=
2,      n=1
2n-1, n≥2
(n∈N*),求使數(shù)列{an}的前n項和Sn為完全平方數(shù)列時n的值;
(2)若數(shù)列{bn}的前n項和Tn=(n-t)2(其中t∈N*),那么數(shù)列{|bn|}是否為“完全平方數(shù)列”?若是,求出t的值;若不是,請說明理由;
(3)試求所有為“完全平方數(shù)列”的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60°,M、N分別是對角線BD、AC上的點,AC、BD相交于點O,已知BM=
1
3
BO,ON=
1
3
OC.設向量
AB
=
a
,
AD
=
b

(1)試用
a
,
b
表示
MN
;
(2)求|
MN
|

查看答案和解析>>

同步練習冊答案