18.(1)將下列文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言.
①點(diǎn)P在直線l上,但不在平面α內(nèi);
②平面α與平面β交于直線l,a在平面β內(nèi),且與直線l交于點(diǎn)P.
(2)將下列符號(hào)語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言.
①P∉m,m?α,l∩α=P;②α∩β=l,β∩γ=m,α∩γ=n,l∩m∩n=P.

分析 在集合中,點(diǎn)為元素,直線和平面為集合,根據(jù)題意,正確用集合中的符合即可.

解答 解:(1)將下列文字語(yǔ)言轉(zhuǎn)化為符號(hào)語(yǔ)言.
①點(diǎn)P在直線l上,但不在平面α內(nèi):P∈l,P∉α;
②平面α與平面β交于直線l,a在平面β內(nèi),且與直線l交于點(diǎn)P:α∩β=l,a⊆β,a∩l=P;
(2)將下列符號(hào)語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言.
①P∉m,m?α,l∩α=P;
直線m在平面α內(nèi),直線l與平面α交于點(diǎn)P,且P不在直線m上;
②α∩β=l,β∩γ=m,α∩γ=n,l∩m∩n=P.
平面α與平面β交于直線l,平面β與平面γ交于直線m,平面α與平面γ交于直線n,且直線l,m,n相交于點(diǎn)P.

點(diǎn)評(píng) 考查了集合和空間幾何中點(diǎn),線,面的語(yǔ)言表述,屬于基礎(chǔ)內(nèi)容,應(yīng)牢記.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在極坐標(biāo)系中,點(diǎn)(1,0)和點(diǎn)(1,$\frac{π}{2}$)的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,四棱錐P-ABCD的底面為等腰梯形,AB∥DC,AB=2AD=2,PA⊥平面ABCD,∠ABC=60°
(1)求AC的長(zhǎng);
(2)證明:BC⊥PC;
(3)若PA=AB,求PC與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)列{an}是等差數(shù)列,{bn}是正項(xiàng)等比數(shù)列,且a5=b6,則一定有( 。
A.a3+a7≤b4+b8B.a3+a7<b4+b8C.a3+a7>b4+b8D.a3+a7≥b4+b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$均為單位向量且夾角為120°,則($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)等于( 。
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.兩圓x2+y2-2y-3=0與x2+y2=1的位置關(guān)系是( 。
A.相交B.內(nèi)含C.內(nèi)切D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x3-3x2+2.
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有,試寫出極值;
(3)畫出它的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算:${(0.027)^{-\frac{1}{3}}}-{log_3}2•{log_8}3$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}+\overrightarrow{c}$=2$\overrightarrow$,則稱向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$依次成“等差”向量;若向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}•\overrightarrow{c}$=$\overrightarrow{^{2}}$,則稱$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$依次成“等比”向量.已知直線l上不同三點(diǎn)A,B,C,O為直線l外一點(diǎn),有以下說(shuō)法:
①若$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量,則點(diǎn)B是線段AC的中點(diǎn);
②若點(diǎn)B是線段AC的中點(diǎn),則$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$依次成“等差”向量;
③若點(diǎn)B是線段AC的中點(diǎn),則$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$可能依次成“等比”向量;
④若|$\overrightarrow{OA}$|=5,|$\overrightarrow{OC}$|=8,|$\overrightarrow{AC}$|=7,則$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$不可能依次成“等比”向量.
其中說(shuō)法正確的序號(hào)是①②④(把正確說(shuō)法的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案