如圖的程序框圖,其運行結果是
 

考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)條件判斷最后一次循環(huán)的i值,由此可得算法的功能是求S=2+4+…+10的值,計算可得答案.
解答: 解:由程序框圖知:最后一次循環(huán)的i值為10,
∴算法的功能是求S=2+4+…+10的值,
∴輸出S=2+4+6+8+10=30.
故答案為:30.
點評:本題考查了循環(huán)結構的程序框圖,根據(jù)框圖的流程判斷算法的功能是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,求證:a1,a2,a3不成等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知曲線C1上的任意一點到點A(-1,0),B(1,0)的距離之和為2
2

(Ⅰ)求曲線C1的方程;
(Ⅱ)設橢圓C2:x2+
3y2
2
=1,若斜率為k的直線OM交橢圓C2于點M,垂直于OM的直線ON交曲線C1于點N.
(i)求證:|MN|的最小值為
2
;
(ii)問:是否存在以原點為圓心且與直線MN相切的圓?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,側視圖是一個等邊三角形,俯視圖是半圓和正方形,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=1+i(i為虛數(shù)單位),
.
z
是z的共軛復數(shù),則z2+
.
z
2的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,函數(shù)f(x)=|x+a|+|x-b|的最小值為2,則a2+b2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①小于90°的角是第象Ⅰ限角;
②將y=3sin(x+
π
5
)的圖象上所有點向左平移
5
個單位長度可得到y(tǒng)=3sin(x-
π
5
)的圖象;
③若α、β是第Ⅰ象限角,且α>β,則sinα>sinβ;
④若α為第Ⅱ象限角,則
α
2
是第Ⅰ或第Ⅲ象限的角;
⑤函數(shù)y=tanx在整個定義域內是增函數(shù)
其中正確的命題的序號是
 
.(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班級有3名學生被復旦大學自主招生錄取后,大學提供了3個專業(yè)由這3名學生選擇,每名學生只能選擇一個專業(yè),假設每名學生選擇每個專業(yè)都是等可能的,則這3個專業(yè)中恰有一個專業(yè)沒有學生選擇的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下四個命題:
①線性回歸方程
.
y
=bx+a對應的直線至少經過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),…,(xn,yn)中的一個點;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③設[x]表示不大于x的最大整數(shù),則對任意實數(shù)x,y都應有[x+y]≤[x]+[y];
④等比數(shù)列{an}中,首項a1<0,則數(shù)列{an}是遞減數(shù)列的充要條件是公比q>1.
其中真命題的序號是
 
.(請把真命題的序號都填上)

查看答案和解析>>

同步練習冊答案