已知函數(shù)f(x)=ex+k•e-x的最小值為2,(k為常數(shù)),函數(shù)g(x)=2x-ax3,(a為常數(shù)).
(1)當(dāng)a=1時(shí),證明:存在x0∈(0,1)使得y=f(x)的圖象在點(diǎn)(x0,f(x0))處的切線和y=g(x)的圖象在點(diǎn)(x0,g(x0))處的切線平行;
(2)若對(duì)任意x∈R不等式f(x)≥g′(x)恒成立,求a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)確定f(x)=ex+e-x,求導(dǎo)數(shù),構(gòu)造h(x)=ex-e-x-2+3x2,利用零點(diǎn)存在定理,即可得出結(jié)論;
(2)對(duì)任意x∈R不等式f(x)≥g′(x)恒成立,即ex+e-x≥2-3ax2恒成立,利用x=0時(shí),函數(shù)f(x)=ex+•e-x的最小值為2,可求a的取值范圍.
解答: (1)證明:∵f(x)=ex+k•e-x的最小值為2,
∴k=1,
∴f(x)=ex+e-x,∴f′(x)=ex-e-x,
∵g(x)=2x-x3,∴g′(x)=2-3x2,
設(shè)h(x)=ex-e-x-2+3x2,則h(0)=-2,h(1)=e+1-
1
e

∴存在x0∈(0,1)使得y=f(x)的圖象在點(diǎn)(x0,f(x0))處的切線
和y=g(x)的圖象在點(diǎn)(x0,g(x0))處的切線平行;
(2)解:對(duì)任意x∈R不等式f(x)≥g′(x)恒成立,即ex+e-x≥2-3ax2恒成立,
∵x=0時(shí),函數(shù)f(x)=ex+•e-x的最小值為2,
∴ex+e-x≥2-3ax2恒成立,可得a≤0.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定積分
π
0
cosxdx=( 。
A、-1B、0C、1D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式(x2-1)•(x-a)<0沒有正整數(shù)解,則實(shí)數(shù)a的最大值為( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

作出函數(shù)y=|x2+2x|的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用三角函數(shù)線證明:|sinα|+|cosα|≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+cos(2x-
π
6
),x∈R.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a=1,b=
13
,B為銳角,且f(B)=
3
2
,求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某設(shè)備的使用年限xi(單位:年)和所支出的維修費(fèi)用yi(萬元)的數(shù)據(jù)資料算
5
i=1
xi=20,
5
i=1
yi=25,
5
i=1
xi2=90,
5
i=1
xiyi=112.3.
(Ⅰ)求維修費(fèi)用y對(duì)使用年限x的線性回歸方程
y
=
b
x+
a
;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān),并估計(jì)使用年限為20年時(shí),維修費(fèi)用約是多少?(附:在線性回歸方程
y
=
b
x+
a
,
b
=
n
i=1
xiyi-nxy
n
i=1
xi2-nx2
,
a
=y-
b
x,其中x,y為樣本平均值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(ωx+θ)的部分圖象如下圖,其中ω>0,|θ|<
π
2
,a是△ABC的角A所對(duì)的邊.
(1)求f(x)的解析式;
(2)若△ABC中角B所對(duì)的邊b=1,cosC=f(
C
2
),求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市環(huán)保部門對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究,發(fā)現(xiàn)一天中環(huán)境污染指數(shù)f(x)與時(shí)刻x(時(shí))的關(guān)系為f(x)=a|
x
x2+1
-a|+a+
16
9
,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且a∈(0,
1
4
],用每天f(x)的最大值作為當(dāng)天的污染指數(shù),記作M(a).
(Ⅰ)令t=
x
x2+1
,x∈[0,24],求t的取值范圍;
(Ⅱ)按規(guī)定,每天的污染指數(shù)不得超過2,問目前市中心的污染指數(shù)是否超標(biāo)?

查看答案和解析>>

同步練習(xí)冊(cè)答案