1.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-1,
(1)求f(-1)的值.
(2)求當(dāng)x<0時(shí)f(x)的解析式.

分析 (1)先求出f(1)=1,進(jìn)而根據(jù)奇函數(shù)的性質(zhì),可得f(-1)=-f(1);
(2)根據(jù)已知可得f(x)為奇函數(shù),可得f(0)=0,當(dāng)x<0時(shí),-x>0,f(x)=-f(-x)得到x<0時(shí),f(x)的解析式,綜合可得答案.

解答 解:(1)∵當(dāng)x>0時(shí),f(x)=2x-1,
∴f(1)=1,
又∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(-1)=-f(1)=-1;
(2)當(dāng)x<0時(shí),-x>0,
f(x)=-f(-x)=-2-x+1,
當(dāng)x=0時(shí),
f(0)=0,
∴f(x)=$\left\{\begin{array}{l}-{2}^{-x}+1,x<0\\ 0,x=0\\{2}^{x}-1,x>0\end{array}\right.$.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知一個(gè)長方體的長、寬、高之和為12,對角線長為8,那么它的表面積為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知cos($\frac{π}{4}$+α)=$\frac{3}{5}$,且$\frac{7}{12}$π<α<$\frac{7}{4}$π,求$\frac{sin2α(1+tanα)}{1-tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知cos(75°+α)=$\frac{1}{3}$,其中α為第三象限角,則cos(105°-α)+sin(α-105°)+sin(α-15°)=$\frac{2\sqrt{2}-2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)直線l:y=kx+1與曲線f(x)=ax2+2x+b+ln(x+1)(a>0)相切于點(diǎn)P(0,f(0)).
(1)求b,k的值;
(2)若直線l與曲線y=f(x)有且只有一個(gè)公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=${(\frac{4}{3})}^{-{x}^{2}+2x-3}$的單調(diào)增區(qū)間(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合M={x|5-|2x-3|∈N*},則M的所有真子集的個(gè)數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)函數(shù)中,函數(shù)值的最小值為2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}({0<x<\frac{π}{2}})$
C.y=3x+3-xD.y=lgx+$\frac{1}{lgx}({1<x<10})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.全集U=R,集合A={x|y=log2(1-x)},B={y|y=($\frac{1}{2}$)|x|},求:
(1)A∩B
(2)(∁UA)∪B.

查看答案和解析>>

同步練習(xí)冊答案