已知f(x)是定義在R上的函數(shù),f(2x-3)=x2+x+1,則f(x)=
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法,設(shè)2x-3=t,求出f(t),即得f(x)的解析式.
解答: 解:根據(jù)題意,設(shè)2x-3=t,(t∈R);
∴x=
t+3
2

∴f(t)=(
t+3
2
)
2
+
t+3
2
+1
=
1
4
t2+2t+
19
4
;
即f(x)=
1
4
x2+2x+
19
4
,(x∈R);
故答案為:
1
4
x2+2x+
19
4
,(x∈R).
點(diǎn)評(píng):本題考查了求函數(shù)解析式的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若隨機(jī)變量ξ~N(2,1),且P(ξ>3)=0.1587,則P(ξ>1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=log2x在點(diǎn)(1,0)處的切線與坐標(biāo)軸所圍三角形的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的直觀圖是邊長為2的正三角形,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=32x-(k+1)3x+2,當(dāng)x∈R時(shí),f(x)恒為正值,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=n•2n-1,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①定義在[a,b]上的偶函數(shù)以f(x)=x2+(a+5)x+b最小值為5;
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則函數(shù)f(x+1)的圖象關(guān)于點(diǎn)A(1,0)對稱;
④已知
2
2-4
+
6
6-4
=2,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2,(n≠4)
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x>0
4x+3y≤4
y≥0
,則w=
y+1
x
的最小值是( 。
A、-2B、2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對任意a∈R,a*0=a;
(2)對任意a,b,c∈R,(a*b)*c=(ab)*c+(a*c)+(b*c)-2c.
如:3*2=(3*2)*0=(3×2)*0+(3*0)+(2*0)-2×0=6+3+2-0=11.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;     
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)成中心對稱;
③函數(shù)f(x)為奇函數(shù);   
④函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),  &(
1
2
,+∞)

其中所有正確說法的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案