已知關(guān)于x的不等式ax2-ax-2a2>1(a>0且a≠1)的解集為{x|-a<x<2a};且函數(shù)f(x)=
(
1
a
)
x2+2mx-m
-1
的定義域為R,則m的范圍為( 。
A、[-1,0]B、(0,1)
C、(1,+∞)D、φ
考點:指、對數(shù)不等式的解法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a>1時,條件不可能成立,當(dāng)0<a<1時,由題意可得x2+2mx-m≥0恒成立,故有△=4m2+4m≤0,由此求得m的范圍.
解答: 解:當(dāng)a>1時,
由題意可得 x2-ax-2a2>0的解集為(-a,2a),
(
1
a
)
x2+2mx-m
≥(
1
a
)
0
,即x2+2mx-m≤0恒成立,
這顯然是不可能的.
當(dāng)0<a<1時,
由題意可得 x2-ax-2a2<0的解集為(-a,2a),
(
1
a
)
x2+2mx-m
≥(
1
a
)
0
,即 x2+2mx-m≥0恒成立,
故有△=4m2+4m≤0,解得-1≤m≤0,
故選A.
點評:本題主要考查指數(shù)不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長是1,則直線DA1與平面ACB1間的距離為(  )
A、
3
3
B、
6
3
C、
2
3
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從集合{2,3,5,7,11,21,33,35,55}中任取三個數(shù),則至少有兩個數(shù)最大公約數(shù)大于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)在區(qū)間[0,4]上任取一個實數(shù),恰好取在區(qū)間[1,3]上的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機撒一粒芝麻,它落在陰影區(qū)域內(nèi)的概率為
1
3
,則陰影區(qū)域的面積為( 。
A、
3
4
B、
8
3
C、
4
3
D、無法計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≤2},B={x|x(x-3)<0},則A∩B=(  )
A、{x|0<x≤2}
B、{x|x<0}
C、{x|x≤2,或x>3}
D、{x|x<0,或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O是坐標(biāo)原點,兩定點A,B滿足|
OA
|=|
OB
|=
OA
OB
=2
,則點集{P|
OP
OA
OB
,λ≥0,μ≥0,λ+μ≤1}
所表示區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(不等式選做題)對于任意θ∈R,|sinθ-3|≥a+
2
a
恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機變量X的分布列為
 X  1  2  3
 P  a  b  0.1
且E(X)=1.5,則a-b=
 

查看答案和解析>>

同步練習(xí)冊答案