C.(不等式選做題)若關(guān)于x 的方程x2+x+|a-
1
4
|=0(a∈R)有實根,則a的取值范圍是
 
考點:絕對值不等式
專題:計算題,不等式的解法及應用
分析:根據(jù)題意,利用一元二次方程根的判別式可得△=12-4•|a-
1
4
|≥0,化簡得|a-
1
4
|≤
1
4
,解之即可得到實數(shù)a的取值范圍.
解答: 解:∵關(guān)于x的方程x2+x+|a-
1
4
|=0(a∈R)有實根,
∴△=12-4•|a-
1
4
|≥0,即|a-
1
4
|≤
1
4
,
可得-
1
4
≤a-
1
4
1
4
,解得0≤a≤
1
2
,
∴實數(shù)a的取值范圍是[0,
1
2
].
故答案為:[0,
1
2
]
點評:本題已知關(guān)于x的一元二次方程有實數(shù)根,求參數(shù)a的取值范圍.著重考查了一元二次方程根的判別式和絕對值不等式的解法等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個空間幾何體的三視圖及其相關(guān)數(shù)據(jù)如圖所示,則這個空間幾何體的表面積是(  )
A、
11π
2
B、
11π
2
+6
C、11π
D、
11π
2
+3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanθ=2,則2sin2θ-sinθcosθ-cos2θ=( 。
A、5
B、1
C、
1
2
D、
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科做)計算
1
0
(x+
1-x2
)dx
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正項等比數(shù)列{an}其中a2•a5=10,則lga3+lga4=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x2-6|,若a<b<0,且f(a)=f(b),則a2b的最小值是(  )
A、-16B、-12
C、-10D、-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足(x-2)2+y2=3,設(shè)k=
y
x
,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線l:4x+3y+a=0和圓C:x2+y2+2x-4y+1=0有公共點,則實數(shù)a的取值范圍是( 。
A、[-12,8]
B、[-8,12]
C、[-22,18]
D、[-18,22]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式組
x-a>0
3-2x>0
的整數(shù)解只有6個,則a的取值范圍是( 。
A、(-∞,-4)
B、[-5,-4)
C、(-5,+∞)
D、(-5,-
3
2
)

查看答案和解析>>

同步練習冊答案