若a2+b2=
1
4
,a-b=
1
2
,則a+b的值為
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用完全平方公式,將a-b=
1
2
平方并代入a2+b2=
1
4
,算出2ab=0,從而得出(a+b)2=a2+2ab+b2=a2+b2=
1
4
,可得a+b的值.
解答: 解:∵a-b=
1
2

∴(a-b)2=a2-2ab+b2=
1
4

∵a2+b2=
1
4
,
∴(a2+b2)-2ab=
1
4
,即
1
4
-2ab=
1
4
,得2ab=0.
又∵(a+b)2=a2+2ab+b2=a2+b2=
1
4
,
∴a+b=±
1
2

故答案為:±
1
2
點(diǎn)評(píng):本題給出a、b的平方和與a、b的差,求它們的和.著重考查了完全平方公式和解方程等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α-π)=2cos(2π-α),求
sin(π-α)+5cos(2π-α)
3cos(π-α)-sin(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示的等邊△ABC的邊長(zhǎng)為2a,CD是AB邊上的高,E、F分別是AC、BC邊的中點(diǎn).現(xiàn)將△ABC沿CD折疊成如圖2所示的直二面角A-DC-B.

(1)試判斷折疊后直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(2)求四面體A-DBC的外接球體積與四棱錐D-ABFE的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
x
-x

(1)判f(x)的奇偶性并予以證明.
(2)求使f(x)>
1
x
+x-x2+3
的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={1,2,3,4,5},B={x|
x-2
4-x
≥0
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c的圖象如圖所示,反比例函數(shù)y=
a
x
與正比例函數(shù)y=(b+c)x在同一坐標(biāo)系中的大致圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中.已知AB=2,AC=4,A1A=3,D是BC的中點(diǎn).
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在(-2,2)上的減函數(shù),滿足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式組
x+y-11≥0
3x-y+3≥0
5x-3y+9≤0
,表示的平面區(qū)域?yàn)镈,若指數(shù)函數(shù)y=ax的圖象上存在區(qū)域D上的點(diǎn),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案