設(shè)不等式組
x+y-11≥0
3x-y+3≥0
5x-3y+9≤0
,表示的平面區(qū)域為D,若指數(shù)函數(shù)y=ax的圖象上存在區(qū)域D上的點,則a的取值范圍是
 
考點:二元一次不等式(組)與平面區(qū)域,指數(shù)函數(shù)的圖像與性質(zhì)
專題:不等式的解法及應(yīng)用
分析:先依據(jù)不等式組
x+y-11≥0
3x-y+3≥0
5x-3y+9≤0
,結(jié)合二元一次不等式(組)與平面區(qū)域的關(guān)系畫出其表示的平面區(qū)域,再利用指數(shù)函數(shù)y=ax的圖象特征,結(jié)合區(qū)域的角上的點即可解決問題.
解答: 解:作出區(qū)域D的圖象,聯(lián)系指數(shù)函數(shù)y=ax的圖象,能夠看出,
當(dāng)圖象經(jīng)過區(qū)域的邊界點C(2,9)時,a可以取到最大值3,
而顯然只要a大于1,圖象必然經(jīng)過區(qū)域內(nèi)的點.
則a的取值范圍是 1<a≤3.
故答案為:1<a≤3
點評:這是一道略微靈活的線性規(guī)劃問題,本題主要考查了用平面區(qū)域二元一次不等式組、指數(shù)函數(shù)的圖象與性質(zhì),以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a2+b2=
1
4
,a-b=
1
2
,則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
OA
=(1,
1
2
),
OB
=(0,1),若動點P(x,y)滿足條件:
0<
OP
OA
<1
0<
OP
OB
<1.
,則P(x,y)的變動范圍(不含邊界的陰影部分)是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等式lg(x+y)=lgx+lgy不是對數(shù)公式,但對某些x,y仍能成立,如x=y=2.試另舉一例使等式成立.x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(0,
π
2
),且sinα=
5
5
,cosβ=
10
10

(1)求cos(α-β)     
(2)求α-β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時,f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時,求f(x)的解析式; 
(3)計算f(0)+f(1)+f(2)+…+f(2011)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<3-x≤4},集合B={x|2x≥log381},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q(q≠0),且b2+S2=12,q=
S2
b2

(1)求{an}與{bn}的通項公式;
(2)證明:
1
3
1
S1
+
1
S2
+…+
1
Sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,5,-1),
b
=(-2,3,5).
(1)求
a
+
b
a
的夾角的余弦值;
(2)若(k
a
+
b
)∥(
a
-3
b
),求實數(shù)k的值;
(3)若(k
a
+
b
)⊥(
a
-3
b
),求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案