甲、乙、丙三人站成一排,則甲、乙相鄰的概率是(  )
A、
2
3
B、
1
3
C、
1
2
D、
5
6
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:甲、乙、丙三人站成一排,基本事件總數(shù)為n=
A
3
3
=6,甲、乙相鄰的基本事件個(gè)數(shù)m=
A
2
2
=2.由此能求出甲、乙相鄰的概率.
解答: 解:甲、乙、丙三人站成一排,基本事件總數(shù)為n=
A
3
3
=6,
甲、乙相鄰的基本事件個(gè)數(shù)m=
A
2
2
=2.
∴甲、乙相鄰的概率p=
2
6
=
1
3

故選:B.
點(diǎn)評(píng):本題考查概率的求法,解題時(shí)要認(rèn)真審題,注意等可能事件的概率計(jì)算公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|sinx|+
1
2
sinx(0≤x≤2π)與函數(shù)g(x)=a(a是常數(shù))有兩個(gè)不同的交點(diǎn),則a的取值范圍是( 。
A、(0,
3
2
B、(-
1
2
,0)∪(0,
3
2
C、(0,
1
2
D、(
1
2
,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)為E,過原點(diǎn)O的直線交橢圓于A,B兩點(diǎn),若|AB|=|BE|=2,cos∠ABE=
3
4
,則橢圓方程為(  )
A、
x2
2
+y2=1
B、
x2
2
+
13y2
14
=1
C、
x2
2
+
15y2
14
=1
D、
x2
2
+
28y2
57
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“對(duì)任意x∈R,都有x2-2x+4≤0”的否定為( 。
A、對(duì)任意x∈R,都有x2-2x+4≥0
B、對(duì)任意x∈R,都有x2-2x+4≤0
C、存在x0∈R,使得x02-2x0+4>0
D、存在x0∈R,使x02-2x0+4≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于下列表格所示五個(gè)散點(diǎn),已知求得的線性回歸直線方程為
y
=0.8x-155,則實(shí)數(shù)m的值為(  )
 x196197200203204
 y1367m
A、8B、8.2
C、8.4D、8.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinx+cosx的最大值是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有老年人28人,中年人44人,青年人72人.為了調(diào)查他們的身體狀況,需從他們中抽取一個(gè)容量為36的樣本,最適合抽取樣本的方法是( 。
A、簡單隨機(jī)抽樣
B、系統(tǒng)抽樣
C、分層抽樣
D、先從老年人中剔除一人,然后分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐A-BCD的各條棱都相等,M、N分別為BC、AD的中點(diǎn),求異面直線MN與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),且經(jīng)過P(2,3).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)問是否存在實(shí)數(shù)m使得直線l:y=mx+1交雙曲線C于A,B兩點(diǎn),且線段AB的中點(diǎn)落在直線x+2y=0上,若存在求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案