8.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x,則函數(shù)f(x),x∈R的解析式為f(x)=$\left\{\begin{array}{l}{x}^{2}+2x,(x≤0)\\-{x}^{2}+2x,(x>0)\end{array}\right.$.

分析 當(dāng)x>0時(shí),-x<0,結(jié)合已知中當(dāng)x≤0時(shí),f(x)=x2+2x,及f(x)=-f(-x)可得函數(shù)的解析式.

解答 解:當(dāng)x>0時(shí),-x<0,
∴f(-x)=(-x)2+2(-x)=x2-2x,
又由函數(shù)f(x)是定義在R上的奇函數(shù),
∴f(x)=-f(-x)=-x2+2x,
綜上所述,f(x)=$\left\{\begin{array}{l}{x}^{2}+2x,(x≤0)\\-{x}^{2}+2x,(x>0)\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{x}^{2}+2x,(x≤0)\\-{x}^{2}+2x,(x>0)\end{array}\right.$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),熟練掌握函數(shù)奇偶性的定義和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)A(-1,0),B(1,4),動(dòng)點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4,求:
(1)動(dòng)點(diǎn)P的軌跡方程;
(2)若點(diǎn)Q是關(guān)于直線P關(guān)于直線y=x-4的對(duì)稱點(diǎn),求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.有一塊三角形邊角地,如圖中△ABC,其中AB=8(百米),AC=6(百米),∠A=60°,某市為迎接2500年城慶,欲利用這塊地修一個(gè)三角形形狀的草坪(圖中△AEF)供市民休閑,其中點(diǎn)E在邊AB上,點(diǎn)F在邊AC上,規(guī)劃部門要求△AEF的面積占△ABC面積的一半,記△AEF的周長為l(百米).
(1)如果要對(duì)草坪進(jìn)行灌溉,需沿△AEF的三邊安裝水管,求水管總長度l的最小值;
(2)如果沿△AEF的三邊修建休閑長廊,求長廊總長度l的最大值,并確定此時(shí)E、F的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知奇函數(shù)f(x)在(0,+∞)上單調(diào)遞減,且滿足f(2)=0,則不等式$\frac{f(x)-f(-x)}{x}<0$的解集為(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列命題:
①函數(shù)$f(x)=\sqrt{1-x}+\sqrt{x-1}$既是奇函數(shù),又是偶函數(shù);
②f(x)=x和$g(x)=\frac{x^2}{x}$為同一函數(shù);
③定義在R上的奇函數(shù)f(x)在(-∞,0)上單調(diào)遞減,則f(x)在(-∞,+∞)上單調(diào)遞減;
④函數(shù)$y=\frac{x}{{2{x^2}+1}}$的值域?yàn)?[-\frac{{\sqrt{2}}}{4},\frac{{\sqrt{2}}}{4}]$;
其中正確命題的序號(hào)是④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線ax-y-1=0與直線(2a+3)x-ay+1=0平行,則a=(  )
A.3B.-1C.-1或3D.-1或3或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓O:x2+y2=1與y軸的負(fù)、正半軸分別交于點(diǎn)F1、F2,垂直于y軸的直線m與二次函數(shù)y=$\frac{1}{4}{x}^{2}$的圖象交于不同的兩點(diǎn)P,Q且$\overrightarrow{{F}_{1}P}•\overrightarrow{{F}_{2}Q}$=-5.
(1)判斷直線m與圓O的位置關(guān)系;
(2)過點(diǎn)M(-3,0)作直線l與圓O交于A,B兩點(diǎn),設(shè)$\overrightarrow{MA}$=λ$\overrightarrow{MB}$,若λ∈[$\frac{3}{2}$,2],求|$\overrightarrow{MA}+\overrightarrow{MB}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某單位招聘職工分為筆試和面試兩個(gè)環(huán)節(jié),將筆試成績合格(滿分100分,及格60分,精確到個(gè)位數(shù))的應(yīng)聘者進(jìn)行統(tǒng)計(jì),得到如下的頻率分布表:
分組頻數(shù)頻率
[60,70]a0.16
(70,80]22x
(80,90]140.28
(90,100]by
合計(jì)501
(I)確定表中a,b,x,y的值(直接寫出結(jié)果,不必寫過程)
(Ⅱ)面試規(guī)定,筆試成績?cè)?0分(不含80分)以上者可以進(jìn)入面試環(huán)節(jié),面試時(shí)又要分兩關(guān),首先面試官依次提出4個(gè)問題供選手回答,并規(guī)定,答對(duì)2道題就終止回答,通過第一關(guān)可以進(jìn)入下一關(guān),如果前三題均沒有答對(duì),則不再回答第四題并且不能進(jìn)入下一關(guān),假定某選手獲得面試資格的概率與答對(duì)每道題的概率相等.
①求該選手答完3道題而通過第一關(guān)的概率;
②記該選手在面試第一關(guān)中的答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于x的一元二次不等式x2+(k-1)x+4>0的解集為(-∞,+∞),則實(shí)數(shù)k的取值范圍是-3<k<5.

查看答案和解析>>

同步練習(xí)冊(cè)答案