13.直線ax-y-1=0與直線(2a+3)x-ay+1=0平行,則a=( 。
A.3B.-1C.-1或3D.-1或3或0

分析 利用兩條直線平行,它們的斜率相等或它們的斜率同時(shí)不存在的性質(zhì)求解.

解答 解:因?yàn)橹本ax-y-1=0的斜率存在,
要使兩條直線平行,必有a=$\frac{2a+3}{a}$,解得a=3或a=-1,
當(dāng)a=-1時(shí),已知直線-x-y-1=0與直線x+y+1=0,兩直線重合,
則實(shí)數(shù)a的值為 3.
故選:A.

點(diǎn)評(píng) 本題考查兩條直線平行的判定,是基礎(chǔ)題.本題先用斜率相等求出參數(shù)的值,再代入驗(yàn)證,是解本題的常用方法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}中,a1=-16,3an=3an-1+2(n∈N*),若anan+2<0,則n=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若函數(shù)$f(x)=Asin(ωx-\frac{π}{6})+B(A>0,ω>0)$的最大值為3,最小值為-1,其圖象相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$,則$f(\frac{π}{3})$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)$f(x)=\frac{{{{(x-4)}^0}}}{{\sqrt{{x^2}-4x+3}}}$的定義域?yàn)椋?∞,1)∪(3,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x,則函數(shù)f(x),x∈R的解析式為f(x)=$\left\{\begin{array}{l}{x}^{2}+2x,(x≤0)\\-{x}^{2}+2x,(x>0)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若直線ax-by+2=0(a>0,b>0)平分圓x2+y2+2x-2y-1=0的面積,則$\frac{1}{a}+\frac{3}$的最小值為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知ABCD和ABEF是兩個(gè)全等的矩形,M、N分別為AC、FB上的點(diǎn),且AM=FN,過(guò)點(diǎn)M作MP∥CB,交AB于P,求證:平面MNP∥平面CEB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:log0.2x(x+2)≥log0.23,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)P在函數(shù)y=cosx,(x<0)的圖象上,動(dòng)點(diǎn)Q在y=$\sqrt{4-{x}^{2}}$的圖象上,則關(guān)于y軸對(duì)稱的點(diǎn)P,Q共有( 。
A.0對(duì)B.1對(duì)C.2對(duì)D.3對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案