已知α、β∈(0,
),sin
α-sinβ=- , cosα-cosβ=,求sin(α-β)的值.
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由于sinα-sinβ=-
①,cosα-cosβ=
②,利用①
2+②
2可求得cos(α-β)=
,進一步分析得到-
<α-β<0,從而可求sin(α-β)的值.
解答:
解:∵sinα-sinβ=-
①,cosα-cosβ=
②,
①
2+②
2得:sin
2α+sin
2β-2sinαsinβ+cos
2α+cos
2β-2cosαcosβ=
,
即2-2cos(α-β)=
,
∴cos(α-β)=
;
又α、β∈(0,
),cosα-cosβ=
,
∴0<α<β<
,
∴-
<α-β<0,
∴sin(α-β)=-
=-
.
點評:本題考查兩角和與差的正弦函數(shù),考查α-β范圍的確定,求得-
<α-β<0是關(guān)鍵,也是難點,易錯點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)y=(1-3x)
-4的導(dǎo)數(shù)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求函數(shù)y=tan(2x-
),x≠
+(k∈Z)的周期.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,等邊△ABC中,AB=3,O為中心,過O的直線交AB于M,交AC于N,設(shè)∠AOM=θ(0≤θ≤120°),當θ分別為何值時,
+
取得最大和最小值,并求出其最大和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在平面直角坐標系xoy中,以坐標原點O為極點,以x軸的正半軸為極軸建立極坐標系,得曲線C的極坐標方程為ρ=6cosθ(ρ>0),設(shè)A,B兩點的極坐標依次分別為(2,-
)和(4,
).
(Ⅰ)求線段AB的長及曲線C的直角坐標方程;
(Ⅱ)設(shè)直線OA與曲線C的另一個交點為P,過點P作直線AB的垂線l,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)是R上的奇函數(shù),且f(x)的圖象關(guān)于x=1對稱,當x∈[0,1]時,f(x)=2x-1
(1)求證:f(x)是周期函數(shù);
(2)當x∈[1,2]時,求f(x)的解析式;
(3)計算f(0)+f(1)+f(2)+…+f(2013)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)函數(shù)f(x)=lnx,g(x)=ax+1,a∈R,記F(x)=f(x)-g(x).
(Ⅰ)求曲線y=f(x)在x=e處的切線方程;
(Ⅱ)求函數(shù)F(x)的單調(diào)區(qū)間;
(Ⅲ)當a>0時,若函數(shù)F(x)沒有零點,求a的取值范圍.
查看答案和解析>>