19.等式$\sqrt{\frac{x}{x-2}}=\frac{\sqrt{x}}{\sqrt{x-2}}$成立的條件是( 。
A.x≠2B.x>0C.x>2D.0<x<2

分析 根據(jù)二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{x≥0}\\{x-2>0}\end{array}\right.$,解得:x>2,
故選:C.

點評 本題考查了求函數(shù)的定義域問題,考查了二次個數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.若方程|3x-1|=k有兩個不同解,則實數(shù)k的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù) f(x)的定義域為 A,若當f(x1)=f(x2)(x1,x2∈A)時,總有x1=x2,則稱 f(x)為單值函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單值函數(shù).給出下列命題:
①函數(shù)f(x)=x2(x∈R)是單值函數(shù);
②函數(shù)f(x)=2x(x∈R)是單值函數(shù);③若f(x)為單值函數(shù),x1,x2∈A,且x1≠x2,則f(x1)≠f(x2);
④函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是單值函數(shù).
其中的真命題是②③.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.各項為正數(shù)的數(shù)列{an} 的前n項和為Sn,且滿足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(Ⅰ)求an;
(Ⅱ)設(shè)函數(shù)f(n)=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{f(\frac{n}{2}),n為偶數(shù)}\end{array}\right.$,Cn=f(2n+4)(n∈N+),求數(shù)列{Cn}的前n項和Tn..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=loga(4x-x2-3)(0<a<1)的單調(diào)增區(qū)間是(2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,底面邊長和側(cè)棱長均為2,D,D1分別是BC,B1C1的中點.
(1)求證:AD⊥C1D;
(2)求證:平面ADC1∥平面A1D1B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)f(x+1)的定義域是[-2,4],則函數(shù)f(2x-1)的定義域是[0,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某種產(chǎn)品有4只次品和6只正品,每只產(chǎn)品均不同且可區(qū)分,今每次取出一只測試,測試后不放回,直到4只次品全測出為止,則最后一只次品恰好在第五次測試時被發(fā)現(xiàn)的不同情形有576種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.對于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R,a>0,且a≠1).
(1)先判斷函數(shù)y=f(x)的單調(diào)性,再證明之;
(2)實數(shù)a=1時,證明函數(shù)y=f(x)為奇函數(shù);
(3)求使f(x)=m,(x∈[0,1])有解的實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案