12.直線l的斜率k=x2+1(x∈R),則直線l的傾斜角α的范圍為$[\frac{π}{4},\frac{π}{2})$.

分析 通過直線的斜率的范圍,得到傾斜角的正切函數(shù)的范圍,然后求解傾斜角的范圍.

解答 解:因為PA?,所以k≥1,即tanα≥1,又α∈[0,π),所以直線PAC的傾斜角AC?的范圍為$[\frac{π}{4},\frac{π}{2})$.
故答案為:$[\frac{π}{4},\frac{π}{2})$.

點評 本題考查直線的傾斜角與斜率關(guān)系;正切函數(shù)的性質(zhì);考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正方形ABCD的邊長為6,空間有一點M(不在平面ABCD內(nèi))滿足|MA|+|MB|=10,則三棱錐C-ABM的體積的最大值是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}中,公差d>0,且a2、a6是一元二次方程$\frac{1}{2}$x2-8x+14=0的根.
(1)求數(shù)列{an}的通項公式an
(2)求數(shù)列{an}的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a>0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值為1,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計算下列各式的值
(Ⅰ)lg24-lg3-lg4+lg5
(Ⅱ)${(\root{3}{3}•\sqrt{2})^6}+{(\sqrt{3\sqrt{3}})^{\frac{4}{3}}}-\root{4}{2}×{8^{0.25}}-{(2015)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直角坐標平面內(nèi)的兩個不同點M,N滿足條件:
①M,N都在函數(shù)y=f(x)的圖象上; ②M,N關(guān)于y軸對稱.則稱點對[M,N]為函數(shù)y=f(x)的一對“友好點對”.(注:點對[M,N]與[N,M]為同一“友好點對”)已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|(x>0)}\\{|{x}^{2}+4x|(x≤0)}\end{array}\right.$,則此函數(shù)的“友好點對”有3對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.稱正整數(shù)集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質(zhì) P:如果對任意的i,j(1≤i≤j≤n),aiaj與$\frac{a_j}{a_i}$兩數(shù)中至少有一個屬于 A.
(1)分別判斷集合{1,3,6}與{1,3,4,12}是否具有性質(zhì) P;
(2)設(shè)正整數(shù)集合 A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性質(zhì) P.證明:對任意1≤i≤n(i∈N*),ai都是an的因數(shù);
(3)求an=30時n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的方程為x2+y2-3x=0($\frac{5}{3}$<x≤3).
(1)曲線C所在圓的圓心坐標;
(2)是否存在實數(shù)k,使得直線L:y=k(x-4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=(m-2)x2+(m-1)x+3是偶函數(shù),求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案