18.已知i為虛數(shù)單位,則$\frac{1+i}{{i}^{3}}$的共軛復數(shù)是( 。
A.-1+iB.-1-iC.1-iD.1+i

分析 直接利用復數(shù)的代數(shù)形式的乘除運算法則化簡即可.

解答 解:$\frac{1+i}{{i}^{3}}$=$\frac{(1+i)i}{-I•i}$=-1+i,
它的共軛復數(shù)為-1-i.
故選:B.

點評 本題考查復數(shù)的乘除運算魔法師的分母實數(shù)化是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知$\sqrt{(4a+1)^{2}}$=-4a-1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“?x∈R,x2+1≥0”的否定是 ( 。
A.$?{x_0}∈R,{x_0}^2+1≥0$B.$?{x_0}∈R,{x_0}^2+1<0$
C.$?{x_0}∈R,{x_0}^2+1≤0$D.?x∈R,x2+1<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{3}(2-x),x<1}\\{{3}^{x-1},x≥1}\end{array}\right.$則f(-1)+f(log318)=(  )
A.2B.6C.8D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+2y≤8}\\{0≤x≤4}\\{0≤y≤3}\end{array}\right.$,則2x+5y的最大值是19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知奇函數(shù)f(x)滿足f′(-1)=1,則$\underset{lim}{△x→0}\frac{f(△x-1)+f(1)}{△x}$=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知y=sin($\frac{1}{2}x$+$\frac{π}{3}$),x∈R.
(1)求函數(shù)y的最大值及y取最大值時x的集合;
(2)求函數(shù)y的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在各項均為正數(shù)的等比數(shù)列{an}中,a1=2且-8a1,a3,a5成等差數(shù)列,則數(shù)列{an}的前n項和為(  )
A.2nB.2n-2C.2n+1-1D.2n+1-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)y=f(x)的圖象與函數(shù)y=2-x-1的圖象關(guān)于y軸稱,則f(4)=15.

查看答案和解析>>

同步練習冊答案