分析 先由線面平行的判定定理,可得MP∥平面CEB,NP∥平面CEB,再利用面面平行的判定定理即可證得結論.
解答 證明:在平面ABCD內,
∵MP⊥AB,BC⊥AB,
∴MP∥BC,
∵MP?平面CEB,BC?平面CEB,
∴MP∥平面CEB.
∵MP∥BC,
∴AM:MC=AP:PB.
∵AM=FN,AC=FB,
∴MC=NB.
∴AM:MC=FN:NB.
∴AP:PB=FN:NB,
∴NP∥AF∥BE.
又∵NP?平面CEB,BE?平面CEB,
∴NP∥平面CEB.
∵MP∩NP=P,MP,NP?平面MNP,
∴平面MNP∥平面CEB.
點評 本題考查的知識點是線面平行的判定定理,面面平行的判定定理,難度中檔.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(2,+∞) | C. | (-∞,-2)∪(0,2) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[60,70] | a | 0.16 |
(70,80] | 22 | x |
(80,90] | 14 | 0.28 |
(90,100] | b | y |
合計 | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 25 | D. | 5$\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com