【題目】已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線l與該橢圓交于P,Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,若的面積為,求直線l與y軸交點(diǎn)的坐標(biāo).
【答案】(1);(2)
【解析】
(1)設(shè)出橢圓的方程,將已知點(diǎn)代入橢圓的方程及利用橢圓的離心率公式得到關(guān)于橢圓的三個(gè)參數(shù)的等式,解方程組求出的值,代入橢圓方程即可.(2)設(shè)出直線的方程將直線方程與橢圓方程聯(lián)立,消去得到關(guān)于的二次方程,利用韋達(dá)定理得到關(guān)于兩個(gè)交點(diǎn)的坐標(biāo)的關(guān)系,將直線的斜率用坐標(biāo)表示據(jù)已知三個(gè)斜率成等比數(shù)列,列出方程,將韋達(dá)定理得到的等式代入,求出的值,利用判別式大于 得到的范圍,將面積表示出來(lái),得到的等式,解出,即可得到直線l與y軸交點(diǎn)的坐標(biāo).
(1)設(shè)橢圓方程為:,
橢圓的離心率為,過(guò)點(diǎn),
,解得,
橢圓的方程為:.
(2)由題意知,直線的斜率存在且不為0,
設(shè)直線的方程為:,
,消得,,
且,
,
直線的斜率依次成等比數(shù)列,
,,
又,,即,
直線的斜率存在,且,得且.
設(shè)為點(diǎn)到直線的距離,
或,
直線與軸交點(diǎn)的坐標(biāo)為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖a是某市參加2012年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為、、…、[如表示身高(單位:cm)在內(nèi)的學(xué)生人數(shù)].圖b是統(tǒng)計(jì)圖a中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線C:的焦點(diǎn)為F,過(guò)F的直線交拋物線C于A,B兩點(diǎn).
(1)求線段AF的中點(diǎn)M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是萬(wàn)元,它們與投入資金 萬(wàn)元的關(guān)系分別為,,(其中都為常數(shù)),函數(shù)對(duì)應(yīng)的曲線、如圖所示.
(1)求函數(shù)與的解析式;
(2)若該商場(chǎng)一共投資4萬(wàn)元經(jīng)銷甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且以橢圓的兩焦點(diǎn)和短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)恰為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線與拋橢圓相交于,兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn)(其中,使得向量與向量共線(其中為坐標(biāo)原點(diǎn))?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市食品藥品監(jiān)督管理局開展2020年春季快遞餐飲安全檢查,對(duì)本市的8個(gè)快遞配餐點(diǎn)進(jìn)行了原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評(píng)分,其評(píng)分情況如表所示:
快遞配餐點(diǎn)編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購(gòu)加工標(biāo)準(zhǔn)評(píng)分 | 82 | 75 | 70 | 66 | 83 | 93 | 95 | 100 |
衛(wèi)生標(biāo)準(zhǔn)評(píng)分 | 81 | 79 | 77 | 75 | 82 | 83 | 84 | 87 |
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個(gè)被檢查點(diǎn)中任意抽取兩個(gè)組成一組,若兩個(gè)點(diǎn)的原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評(píng)分均超過(guò)80分,則組成“快遞標(biāo)兵配餐點(diǎn)”,求該組被評(píng)為“快遞標(biāo)兵配餐點(diǎn)”的概率.
參考公式:,;參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰(shuí)抓到最后一個(gè)球誰(shuí)贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com