A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 若(3x2+a)(2x+b)≥0在(a,b)上恒成立,則3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,結(jié)合一次函數(shù)和二次函數(shù)的圖象和性質(zhì),可得a,b的范圍,進(jìn)而得到答案.
解答 解:∵(3x2+a)(2x+b)≥0在(a,b)上恒成立,
∴3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,
①若2x+b≥0在(a,b)上恒成立,則2a+b≥0,即b≥-2a>0,
此時(shí)當(dāng)x=0時(shí),3x2+a=a≥0不成立,
②若2x+b≤0在(a,b)上恒成立,則2b+b≤0,即b≤0,
若3x2+a≤0在(a,b)上恒成立,則3a2+a≤0,即-$\frac{1}{3}$≤a≤0,
故b-a的最大值為$\frac{1}{3}$,
故選:A
點(diǎn)評 本題考查的知識點(diǎn)是恒成立問題,二次函數(shù)的圖象和性質(zhì),分類討論思想,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ③④ | C. | ②③④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | K的最小值為$\frac{1}{243}$ | B. | K的最大值為$\frac{1}{243}$ | C. | K的最小值為81 | D. | K的最大值為81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2 | 3 | 4 | 5 | 6 |
y | 0.97 | 1.59 | 1.98 | 2.35 | 2.61 |
A. | y=log2x | B. | y=2x | C. | $y=\frac{1}{2}({{x^2}-1})$ | D. | y=2.61cosx |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com