數(shù)列2,5,8,11,…,則23是這個(gè)數(shù)列的( 。
A、第5項(xiàng)B、第6項(xiàng)
C、第7項(xiàng)D、第8項(xiàng)
考點(diǎn):數(shù)列的概念及簡(jiǎn)單表示法
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:求出數(shù)列的通項(xiàng)公式,即可得到結(jié)論.
解答: 解:數(shù)列2,5,8,11,…,組成以2為首項(xiàng),3為公差的等差數(shù)列,
通項(xiàng)為an=3n-1,
令3n-1=23,可得n=8.
故選:D.
點(diǎn)評(píng):本題主要考查數(shù)列的概念和簡(jiǎn)單表示,求出數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)a、b∈R,記max{a, b}=
a, a≥b
b, a<b
,設(shè)f1(x)=|x-1|,f2(x)=-x2+6x-5,函數(shù)g(x)=max{f1(x),f2(x)},若方程g(x)=a有四個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A、[1,+∞)
B、[
2
3
,+∞)
C、[
2
3
, 1]
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,π)上的函數(shù)f(x)滿足f′(x)•sinx<f(x)•cosx,則下列不等式正確的是(  )
A、f(
π
3
)<
3
•f(
π
6
B、
1
2
•f(
1
2
)<sin
1
2
•f(
π
6
C、sin2•f(1)<sin1•f(2)
D、sin1•f(
1
2
)<sin
1
2
•f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=3n2-10n,則數(shù)列的前10項(xiàng)中正數(shù)項(xiàng)的和為(  )
A、106B、208
C、216D、118

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與方程
(x+2)2+y2
-
(x-2)2+y2
=2等價(jià)的方程是( 。
A、x2-
y2
3
=1(x>0)
B、x2-
y2
3
=1(y>0)
C、y2-
x2
3
=1(y>0)
D、x2-
y2
3
=1(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要做一個(gè)圓錐形的漏斗,其母線長(zhǎng)為40cm,要使其體積為最大,則高為( 。
A、
10
3
3
cm
B、
20
3
3
cm
C、10
3
cm
D、
40
3
3
cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0,|φ|<
π
2
)在區(qū)間[-
π
6
,
π
3
]上的圖象如圖所示.
(1)求ω,φ的值;
(2)設(shè)x∈[0,
12
],不等式|4f(x)-1|<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=3x+3,求:
(1)過點(diǎn)A(3,2)且與直線l平行的直線方程m;
(2)點(diǎn)B(4,5)關(guān)于直線l的對(duì)稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均大于1,前n項(xiàng)和Sn滿足2Sn=
a
2
n
+n-1

(Ⅰ)求a1及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=
1
a
2
n
-1
,求證:b1+b2+…+bn
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案