11.求函數(shù)f(x)=${∫}_{0}^{x}$te-tdt的極值.

分析 根據(jù)題意,求出函數(shù)f(x)的導(dǎo)數(shù)f′(x),利用導(dǎo)數(shù)f′(x)=0,求出f(x)的極值.

解答 解:∵函數(shù)f(x)=${∫}_{0}^{x}$te-tdt,
∴f′(x)=xe-x,
令f′(x)=0,解得x=0;
又x<0時,f′(x)<0,f(x)是減函數(shù),
x>0時,f′(x)>0,f(x)是增函數(shù);
∴x=0時,f(x)取得極小值為f(0)=0.

點評 本題考查了函數(shù)的導(dǎo)數(shù)與定積分的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f (x)由下表定義:
x12345
f (x)41352
若a1=5,an+1=f(an)(n=1,2,…),則a2016=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+2x•tanθ-1,x∈[-$\sqrt{3}$,$\sqrt{3}$].
(1)當(dāng)θ=-$\frac{π}{6}$時,求f(x)的最大值和最小值.
(2)求使f(x)在區(qū)間[-1,$\sqrt{3}$]上是單調(diào)函數(shù)的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解關(guān)于x的不等式:|x2-3x-6|<2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x+a1nx在x=1處的切線l與直線x+2y=0垂直.
(1)求實數(shù)a的值;
(2)已知函數(shù)g(x)=(2-m)f(x)+(3m-2)x+$\frac{1}{x}$,當(dāng)m<0時,討論g(x)的單調(diào)性;
(3)若存在實數(shù)t∈[0,2],使得對任意的x∈[1,k],不等式(x3-6x2+3x+t)ex≤f(x)-lnx恒成立,e為自然對數(shù)的底數(shù),求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,a=3$\sqrt{3}$,b=2,C=150°,解這個三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=3cos(2x+$\frac{π}{7}$)-2的最大值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=cos(2x+$\frac{π}{3}$)+1取得最大值時,x值應(yīng)為kπ-$\frac{π}{6}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知總體的各個體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,則總平均值為10.

查看答案和解析>>

同步練習(xí)冊答案