若(1-x)2011=a0+a1x+…+a2011x2011(x∈R),則a1+…+a2011=(  )
A、2B、0C、-1D、-2
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在所給的等式中,令x=0可得a0=1,在所給的等式中,再令x=1可得a0+a1+…+a2011=0,從而求得a1+…+a2011的值.
解答: 解:在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,令x=0,可得a0=1.
在(1-x)2011=a0+a1x+…+a2011x2011(x∈R)中,再令x=1可得a0+a1+…+a2011=0,
∴a1+…+a2011=-1,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線M:
x2
a2
-
y2
b2
=1(a>0,b>0)實(shí)軸的兩個(gè)頂點(diǎn)為A,B,點(diǎn)P為雙曲線M上除A、B外的一個(gè)動(dòng)點(diǎn),若QA⊥PA且QB⊥PB,則動(dòng)點(diǎn)Q的運(yùn)動(dòng)軌跡為( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
3x-1
x-2
≤-1的解集是(  )
A、{x|
3
4
≤x≤2}
B、{x|
3
4
≤x<2}
C、{x|x>2或x≤
3
4
}
D、{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由①正方形的對(duì)角線相等;②矩形的對(duì)角線相等;③正方形是矩形.寫一個(gè)“三段論”形式的推理,則作為大前提、小前提和結(jié)論的分別為( 。
A、②①③B、③①②
C、①②③D、②③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(ω>0,A>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式為( 。
A、y=sin(2x+
π
6
B、y=2sin(x-
π
6
C、y=2sin(2x-
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(2,
π
4
)且平行于極軸的直線的極坐標(biāo)方程是( 。
A、ρcosθ=4
B、ρsinθ=4
C、ρsinθ=
2
D、ρcosθ=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|x|≤
π
4
,則函數(shù)f(x)=cos2x+sinx的最小值是( 。
A、
1
2
2
-1)
B、-
1
2
2
-1)
C、
1
2
2
+1)
D、-
1
2
2
+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)一個(gè)焦點(diǎn)坐標(biāo)是(2,0),且橢圓的離心率e=
1
2
,則橢圓標(biāo)準(zhǔn)方程( 。
A、
x2
12
+
y2
16
=1
B、
x2
16
+
y2
12
=1
C、
x2
48
+
y2
64
=1
D、
x2
64
+
y2
48
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=25
①過點(diǎn)P(1,-2
6
)作圓O的切線,求切線方程;
②若點(diǎn)M(x,y)是圓O上任意一點(diǎn),求
3
x+y的最大值.

查看答案和解析>>

同步練習(xí)冊答案